CONTINUED FRACTIONS AND CROSS-RATIO GROUPS OF CREMONA TRANSFORMATIONS*

BY H. S. WALL

1. Introduction. An arbitrary cross ratio

$$r_{ijkl} = \begin{bmatrix} z_i, z_j, z_k, z_l \end{bmatrix}$$

of four of the independent variables z_1, z_2, \dots, z_n is expressible rationally in terms of the ratios of any fundamental system such as

C:
$$s_i = [z_{i-1}, z_{i-2}, z_i, z_{i-3}], \quad (i = 4, 5, \dots, n),$$

or

$$M: r_i = [z_1, z_2, z_3, z_i], (i = 4, 5, \dots, n),$$

of n-3 independent ratios. If any particular system of n-3 independent ratios be associated with a particular order of the variables by varying the order of the n variables, we shall have in all n! conjugate systems; these systems are expressible rationally in terms of the original system and in terms of any system of the set. Hence arises a group of n! Cremona transformations on n-3 variables. E. H. Moore, † H. E. Slaught‡ and others have studied the group based on the initial system M.

In this paper I have shown that the transformations based on the system C have application to continued fractions of the form

$$\xi = 1 - \frac{x_1}{1} - \frac{x_2}{1} - \frac{x_3}{1} - \cdots$$

If we take for the n variables z_1, z_2, \dots, z_n any n consecutive convergents of the continued fraction, say

(1)
$$z_i = \frac{A_{q+i}}{B_{q+i}}, \qquad (i = 1, 2, \dots, n; q \ge -1),$$

^{*} Presented to the Society, under a somewhat different title, April 6, 1934.

[†] E. H. Moore, American Journal of Mathematics, vol. 22 (1900), pp. 279-291.

[‡] H. E. Slaught, ibid., pp. 343-380, and Part II in vol. 23.

then in this case the fundamental system C is n-3 consecutive elements x_i of the continued fraction ξ , namely,

(2)
$$s_i = x_{q+i}, \qquad (i = 4, 5, \cdots, n).$$

The Cremona transformations are on these elements, and their effect is to permute n consecutive convergents of ξ among themselves. The transformations do not disturb the convergence or divergence of the continued fraction, and result therefore in new convergence criteria.

2. The Group $C_{n!}$ of Cremona Transformations. Let $A_{m,t}/B_{m,t}$, $(t \ge 0, A_{m,0}/B_{m,0} = A_m/B_m)$, be the mth convergent of the continued fraction

$$1 - \frac{x_{1+t}}{1} - \frac{x_{2+t}}{1} - \frac{x_{3+t}}{1} - \cdots$$

Then with the aid of the identity*

$$A_{n+t-1}B_{t-1} - A_{t-1}B_{n+t-1} = -x_1x_2 \cdot \cdot \cdot x_tB_{n-1,t},$$

we find that a cross ratio $r_{ijkl} = [z_i, z_j, z_k, z_l]$, (i < j < k < l), of four of the *n* variables (1) can be expressed in the form

(3)
$$r_{ijkl} = \frac{B_{k-i-1,q+i+1}B_{l-j-1,q+j+1}}{B_{k-i-1,q+i+1}B_{l-i-1,q+i+1}}.$$

The other five distinct ratios of these four variables can be obtained from the ratio (3) by the well known transformations

(3a)
$$r_{jikl} = \frac{1}{\lambda}, \qquad r_{ikjl} = 1 - \lambda, \qquad r_{kijl} = \frac{1}{1 - \lambda},$$
$$r_{kjil} = \frac{\lambda}{\lambda - 1}, \qquad r_{jkil} = \frac{\lambda - 1}{\lambda},$$

where $\lambda = r_{ijkl}$. In particular, we find that

(4)
$$s_i = x_{q+i}, \qquad (i = 4, 5, \cdots, n).$$

Inasmuch as (3) depends upon x_{q+4} , x_{q+5} , \cdots , x_{q+n} only, it follows that (4) is a fundamental system of cross ratios.

Let j_1, j_2, \dots, j_n be an arbitrary permutation of $1, 2, \dots, n$; and put

^{*} Perron, Die Lehre von den Kettenbrüchen, 1st ed., p. 17.

$$a = \begin{pmatrix} 1, & 2, \cdots, & n \\ j_1, & i_2, \cdots, & i_n \end{pmatrix}.$$

Then

$$C^{a}: s_{i}^{a} = [z_{i_{i-1}}, z_{i_{i-2}}, z_{i_{i}}, z_{i_{i-1}}], (i = 4, 5, \dots, n),$$

is also a fundamental system; and C^a is expressible rationally in terms of C:

$$s_i^a = f_i^a(s_4, s_5, \dots, s_n), \quad (i = 4, 5, \dots, n),$$

or, simply, $C^a = f^a C$.

If b is another permutation, then $C^{ab}=f^aC^b=f^abC$. The n! Cremona transformations f^a , f^b , \cdots form a group $C_{n!}$ simply isomorphic with the symmetric permutation group $G_{n!}$.

The ratios s_i are given in terms of the ratios r_i of E. H. Moore by the formula

(5)
$$r_{ijkl} = [r_i, r_j, r_k, r_l], (r_1 = \infty, r_2 = 0, r_3 = 1).$$

The r_i can be expressed in terms of the s_i by means of (3) and (3a). Thus the group $C_{n!}$ is equivalent to that of E. H. Moore under the transformation

$$s_i = [r_{i-1}, r_{i-2}, r_i, r_{i-3}], \qquad (i = 4, 5, \dots, n).$$

3. Convergence Criteria for Continued Fractions. Let $C_{m'}$ be the subgroup of $C_{2m!}$ corresponding to permutations of the form

$$a = \begin{pmatrix} 1 & 2 & \cdots & m & 1+m & 2+m & \cdots & m+m \\ j_1 & j_2 & \cdots & j_m & j_1+m & j_2+m & \cdots & j_m+m \end{pmatrix},$$

in which j_1, j_2, \dots, j_m is a permutation of $1, 2, \dots, m$. It is plain that $f_4{}^a, f_5{}^a, \dots, f_m{}^a$ are functions of s_4, s_5, \dots, s_m alone, while $f_{m+4}^a, f_{m+5}^a, \dots, f_{2m}^a$ are functions of $s_{m+4}, s_{m+5}, \dots, s_{2m}$ alone. The remaining three functions depend in general upon s_4, s_5, \dots, s_{2m} .

Let $k \ge 0$, $m \ge 3$, $z_{i+1} = A_{km+i}/B_{km+i}$, $(i = 0, 1, \dots, 2m-1)$. Then $s_i = x_{km+i-1}$, $(i = 4, 5, \dots, 2m)$. We have

$$x_{km+i-1}^a = f_i^a(x_{km+3}, x_{km+4}, \dots, x_{(k+2)m-1}), \quad (i = 4, 5, \dots, 2m),$$
 with the exceptional values*

^{*} Perron, loc. cit., p. 198.

$$x_{0}^{a} = \frac{A_{i_{1}-1}}{B_{i_{1}-1}}, \qquad x_{1}^{a} = \frac{A_{i_{1}-1}}{B_{i_{1}-1}} - \frac{A_{i_{2}-1}}{B_{i_{2}-1}},$$

$$x_{2}^{a} = \left(\frac{A_{i_{2}-1}}{B_{i_{2}-1}} - \frac{A_{i_{2}-1}}{B_{i_{2}-1}}\right) / \left(\frac{A_{i_{1}-1}}{B_{i_{2}-1}} - \frac{A_{i_{1}-1}}{B_{i_{2}-1}}\right).$$

Then the continued fraction (with real or complex elements)

$$\xi_a = x_0^a - \frac{x_1^a}{1} - \frac{x_2^a}{1} - \frac{x_3^a}{1} - \cdots$$

has the same convergents as ξ , but in a different order. Consequently, if W_a is a region in m-space such that when the points

$$(x_{km}, x_{km+1}, \cdots, x_{(k+1)m-1}), \quad (k = 0, 1, 2, \cdots),$$

range over W_a we shall always have*

$$|x_n^a| \leq \frac{1}{4}, \qquad (n=2,3,4,\cdots),$$

then ξ converges. In this manner every transformation of the group $C_{m'}$ gives a convergence theorem for ξ .

4. The Groups C_{120} and C_{120} . As an illustration, \dagger we shall consider the groups C_{51} and C_{51} . The group C_{120} is generated by the four transformations

$$K \sim (34), \qquad L \sim (23)(45), \qquad M \sim (45), \qquad T \sim (12).$$

The three transformations K, L, M generate by themselves a subgroup C_{24} of the main group C_{120} ; T will extend C_{24} to the main group.

By (3) and (3a) the transformations K, L, M, T are found to be as follows:

$$K: x' = \frac{x}{x-1}, \ y' = \frac{1}{y}; \qquad L: x' = \frac{1-y}{x}, \ y' = y;$$

$$(6)$$

$$M: x' = \frac{x}{1-y}, \ y' = \frac{y}{y-1}; \quad T: x' = \frac{x}{x-1}, \ y' = \frac{y}{1-x},$$

where, to avoid subscripts, we have put $s_4 = x$, $s_5 = y$.

^{*} Perron, loc. cit., p. 259.

[†] The details of this illustration were worked out by Miss Lozelle Thomas.

In the xy-plane the geometrical configuration for the group C_{24} is as follows. The curves

1.
$$x^2 = 1 - y$$
, 2. $y = 0$, 3. $x = 0$,
4. $y = (x - 1)^2$, 5. $x = 1$, 6. $y = 1$,
7. $x + y = 1$, 8. $x^2 + 2xy - 2x - y + 1 = 0$,

divide the plane into 24 regions. Take the fundamental region I to be the region in the second quadrant bounded by the curves 1, 2 and 3. The other regions in the second quadrant are then: L bounded by 1, 2, 6; LK bounded by 6, 8; LKL bounded by 7, 8; MKL bounded by 4, 7; and MK bounded by 3, 4.

In the first quadrant the regions are: K bounded by 3, 8; KL bounded by 5, 6, 8; KMKL bounded by 4, 5, 6, extending to infinity; MLK bounded by 4, 6; MLKM bounded by 2, 4, 6; MLKLM bounded by 4, 5, 6; KLK bounded by 1, 5, 6; LKLK bounded by 1, 7; MKLM bounded by 4, 7; and KMK bounded by 2, 3, 4.

In the third quadrant the regions are: LM bounded by 1, 2; and M bounded by 1, 2, 3.

In the fourth quadrant the regions are: KM bounded by 2, 3, 8; KLM bounded by 5, 8; MLKLK bounded by 1, 5; MKLK bounded by 1, 7; LKLM bounded by 7, 8; and LKM bounded by 2, 8.

The generators of C_{120} correspond to the permutations (34) (89), (23)(45)(78)(9, 10), (45)(9, 10), and (12)(67). If we denote them by K', L', M', T', respectively, then these transformations are found to be

$$x' = \frac{x}{x-1}, \quad y' = \frac{1}{y}, \quad \bar{x}' = \frac{\bar{x}}{\bar{x}-1}, \quad \bar{y}' = \frac{1}{\bar{y}},$$

$$K': \quad u' = \frac{u}{u-1}, \quad v' = \frac{v}{1-w}, \quad w' = \frac{w}{1-\bar{x}};$$

$$x' = \frac{1-y}{x}, \quad y' = y, \quad \bar{x}' = \frac{1-\bar{y}}{\bar{x}}, \quad \bar{y}' = \bar{y},$$

$$L': \quad u' = \frac{1-y}{u}, \quad v' = \frac{v}{v+w-1}, \quad w' = \frac{w}{v+w-1};$$

$$x' = \frac{x}{1 - y}, \quad y' = \frac{y}{y - 1}, \quad \bar{x}' = \frac{\bar{x}}{1 - \bar{y}}, \quad \bar{y}' = \frac{\bar{y}}{\bar{y} - 1},$$
 $u' = \frac{1}{u}, \quad v' = \frac{v}{v - 1}, \quad w' = \frac{w}{1 - v};$

$$x' = \frac{x}{x-1}, \quad y' = \frac{y}{1-x}, \quad \bar{x}' = \frac{\bar{x}}{\bar{x}-1}, \quad \bar{y}' = \frac{\bar{y}}{1-\bar{x}},$$
 T' :
 $u' = \frac{u}{1-v}, \quad v' = \frac{v}{v-1}, \quad w' = \frac{1}{w},$

where for simplicity we have put $x = x_{5m+3}$, $y = x_{5m+4}$, $u = x_{5m+5}$, $v = x_{5m+6}$, $w = x_{5m+7}$, $\bar{x} = x_{5m+8}$, $\bar{y} = x_{5m+9}$.

Each of these transformations yields a convergence theorem for the continued fraction ξ in accordance with the remarks in §3. For example, K' gives the following theorem.

The continued fraction ξ converges if the following inequalities hold:

$$\left| \frac{x_2}{1 - x_3} \right| \le \frac{1}{4} \; ; \qquad \left| \frac{x_{5n+3}}{x_{5n+3} - 1} \right| \le \frac{1}{4} \; , \qquad \left| \frac{1}{x_{5n+4}} \right| \le \frac{1}{4} \; ,$$

$$(n = 0, 1, 2, \dots),$$

$$\left| \frac{x_{5n}}{1 - x_{5n}} \right| \le \frac{1}{4} \; , \qquad \left| \frac{x_{5n+1}}{1 - x_{5n+1}} \right| \le \frac{1}{4} \; , \qquad \left| \frac{x_{5n+2}}{1 - x_{5n+2}} \right| \le \frac{1}{4} \; ,$$

$$\left| \frac{x_{5n}}{x_{5n}-1} \right| \leq \frac{1}{4}, \quad \left| \frac{x_{5n+1}}{1-x_{5n+2}} \right| \leq \frac{1}{4}, \quad \left| \frac{x_{5n+2}}{1-x_{5n+3}} \right| \leq \frac{1}{4},$$

$$(n = 1, 2, 3, \cdots),$$

where x_1, x_2, x_3, \cdots are real or complex numbers.

NORTHWESTERN UNIVERSITY