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The Jordan Constant For Cremona Group of Rank 2

Egor Yasinsky∗
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8 Gubkina st., Moscow, Russia, 119991

ABSTRACT. We compute the Jordan constant for the group of birational automorphisms of a projective

plane P2
k

, where k is either an algebraically closed field of characteristic 0, or the field of real numbers,

or the field of rational numbers.

1. INTRODUCTION

1.1. Jordan property. Throughout the paper k denotes an algebraically closed field of characteristic

zero, unless stated otherwise. We start with the main definition of this article.

Definition 1.1. A group Γ is called Jordan (we also say that Γ has Jordan property) if there exists a

positive integer m such that every finite subgroup G ⊂ Γ contains a normal abelian subgroup A⊳G of

index at most m. The minimal such m is called the Jordan constant of Γ and is denoted by J(Γ).

Informally, this means that all finite subgroups of Γ are “almost” abelian. The name of J(Γ) (and

the corresponding property) is justified by the classical theorem of Camille Jordan.

Theorem 1.2 (C. Jordan, 1878). The group GLn(k) is Jordan for every n.

Since any subgroup of a Jordan group is obviously Jordan, Theorem 1.2 implies that every linear

algebraic group over k is Jordan. In recent years the Jordan property has been studied for groups of

birational automorphisms of algebraic varieties. The first significant result in this direction belongs

to J.-P. Serre. Before stating it, let us recall that the Cremona group Crn(k) of rank n is the group of

birational automorphisms of a projective space Pn
k

(or, equivalently, the group of k-automorphisms

of the field k(x1, . . . , xn) of rational functions in n independent variables). Note that Cr1(k) ∼= PGL2(k)

is linear and hence is Jordan, but the group Cr2(k) is already “very far” from being linear. However,

the following holds.

Theorem 1.3 (J.-P. Serre [Ser09, Theorem 5.3],[Ser08, Théorème 3.1]). The Cremona group Cr2(k) over

a field k of characteristic 0 is Jordan.

A far-going generalization of Theorem 1.3 was recently proved by Yu. Prokhorov and C. Shramov.

To state their result in its full generality, we first need to recall the following statement, also known as

Borisov–Alexeev–Borisov conjecture.
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Conjecture 1.4. For a given positive integer n, Fano varieties of dimension n with terminal singularities

are bounded, i. e. are contained in a finite number of algebraic families.

Modulo this conjecture, we have the following strong result.

Theorem 1.5. [PS16a, Theorem 1.8] Assume that Conjecture 1.4 holds in dimension n. Then there is

a constant I = I (n) such that for any rationally connected variety X of dimension n defined over an

arbitrary field k of characteristic 0 and for any finite subgroup G ⊂ Bir(X ) there exists a normal abelian

subgroup A ⊂G of index at most I .

Note that this theorem states not only that Bir(X ) are Jordan, but also that the corresponding

constant may be chosen uniformly for all rationally connected X of a fixed dimension. Conjecture

1.4 is settled in dimensions É 3, so the space Cremona group Cr3(k) is known to be Jordan. At this

writing (October 2016), the Borisov-Alexeev-Borisov conjecture seems to be proved in all dimensions

in a recent preprint of Caucher Birkar [Bir16]. So, one has

Corollary 1.6. The group Crn(k) is Jordan for each n Ê 1.

1.2. Jordan constant. So far we discussed only the Jordan property itself. Of course, after establish-

ing that a given group is Jordan, the next natural question is to estimate its Jordan constant. This

can be highly non-trivial: the precise values of J(GLn(k)) for all n were found only in 2007 by M. J.

Collins [Col07]. As for Cremona groups, in [Ser09] a “multiplicative” upper bound for J(Cr2(k)) is

given. Specifically, it was shown that every finite subgroup G ⊂ Cr2(k) contains a normal abelian sub-

group A with [G : A] dividing 210 ·34 ·52 ·7.

For any group Γ one can consider a closely related constant J(Γ), which is called a weak Jordan

constant in [PS16b]. By definition, it is the minimal number m such that for any finite subgroup G ⊂ Γ

there exists a not necessarily normal abelian subgroup A ⊂G of index at most m. One can show that

J(Γ) É J(Γ) É J(Γ)2

for any Jordan groupΓ. The weak Jordan constants for Cr2(k) and Cr3(k) were computed by Prokhorov

and Shramov.

Theorem 1.7. [PS16b, Proposition 1.2.3, Theorem 1.2.4] Suppose that the field k has characteristic 0.

Then one has

J(Cr2(k)) É 288, J(Cr3(k)) É 10 368.

These bounds become equalities if the base field k is algebraically closed.

As we noticed above, one can also obtain an upper bound for J(Cr2(k)) from this theorem, namely

J(Cr2(k)) É 82 944= 2882.

We will show that this bound is very far from being sharp. The goal of this paper is to compute an

exact Jordan constant for the plane Cremona group. Our first main theorem is
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Theorem 1.8. Let k be an algebraically closed field of characteristic 0. Then

J(Cr2(k)) = 7200.

Further, we compute the Jordan constant for Cremona group Cr2(R) and, as a by-product, for the

group Cr2(Q).

Theorem 1.9. One has

J(Cr2(R)) = 120, J(Cr2(R)) = 20.

Theorem 1.10. One has

J(Cr2(Q)) = 120, J(Cr2(Q)) = 20.

Let us consider the category whose objects are R-schemes and morphisms are defined as follows:

we say that there is a morphism f : X 99K Y if f is a rational map defined at all real points of X . Auto-

morphisms in such a category are called birational diffeomorphisms and the corresponding group is

denoted by Aut(X (R)). In recent years, birational diffeomorphisms of real rational projective surfaces

have been studied intensively. As a by-product of Theorem 1.9, we will get the Jordan constant for the

group of birational diffeomorphisms of P2
R

and the sphere S2 viewed as the real locus Q3,1(R) of the

2-dimensional quadric

Q3,1 =
{

[x0 : x1 : x2 : x3] : x2
0 +x2

1 +x2
2 −x2

3 = 0
}

⊂P3
R.

Theorem 1.11. The following holds:

J
(

Aut(P2(R))
)

= 60, J
(

Aut(P2(R))
)

= 12,

J(Q3,1(R)) = 60, J(Q3,1(R)) = 12.

Notation. Our notation is mostly standard.

• Sn denotes the symmetic group of degree n;

• An denotes the alternating group of degree n;

• Dn denotes the dihedral group of order 2n;

• Cn , n > 2, denotes a cyclic characteristic subgroup Cn ⊂ Dn of index 2;

• For a scheme X over R we denote by XC its complexification

XC = X ×SpecR SpecC

• 〈a〉 denotes a cyclic group generated by a;

• A•B denotes an extension of B with help of a normal subgroup A.

Acknowledgments. This work was performed in Steklov Mathematical Institute and supported by

the Russian Science Foundation under grant 14-50-00005. The author would like to thank Constantin

Shramov, Yuri Prokhorov and Andrey Trepalin for useful discussions and remarks.
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2. SOME AUXILIARY RESULTS

In this short section we collect some useful facts concerning Jordan property.

Lemma 2.1. The following assertions hold.

(1) If Γ1 is a subgroup of a Jordan group Γ2, then Γ1 is Jordan and J(Γ1) É J(Γ2).

(2) If Γ1 is a Jordan group, and there is a surjective homomorphism Γ1 → Γ2, then Γ2 is also Jordan

with J(Γ2) É J(Γ1).

The proofs are elementary and we omit them. Next let us compute some Jordan constants.

Lemma 2.2. One has

(1) J(GL2(k)) = 60.

(2) J(GL3(k)) = 360.

(3) J(PGL2(k)) = 60.

(4) J(PGL3(k)) = 360.

Proof. For (1) and (2) we refer the reader to [Col07], where J(GLn(k)) is computed for each n. To

prove (3) and (4), we apply Lemma 2.1 (2) to the natural surjections GLn(k) → PGLn(k), n = 2,3, and

get J(PGL2(k)) É 60 and J(PGL3(k)) É 360. The required equalities are given by the simple groups A5

and A6, respectively (alternatively, one can use the well-known classification of finite subgroups of

PGL2(k) and PGL3(k), like in [PS16b, Lemma 2.3.1]). �

3. THE CASE OF ALGEBRAICALLY CLOSED FIELD

In the remaining part of the paper we shall use the standard language of G-varieties (see e.g.

[DI09a]). We are going to deduce our main Theorem 1.8 by regularizing the action of each finite sub-

group G ⊂ Cr2(k) on some k-rational surface X . Then, applying to X the G-Minimal Model Program,

we reduce to the case when X is either a del Pezzo surface, or a conic bundle.

First, we focus on del Pezzo surfaces, which by definition are projective algebraic surfaces X with

ample anticanonical class −KX .

Proposition 3.1. Let X be a smooth del Pezzo surface. Then

J(Aut(X )) É 7200.

If X is not isomorphic to P1 ×P1, then one has J(Aut(X )) É 360.

Proof. We shall consider each d = K 2
X separately.

d = 9: Then X ∼=P2 and J(Aut(X )) É 360 by Lemma 2.2 (4).

d = 8: If X is a blow up π : X →P2 at one point, then π is Aut(X )-equivariant, so J(Aut(X )) É 360 by the

case d = 9. Now let X ∼=P1 ×P1. Then

Aut(X ) ∼=
(

PGL2(k)×PGL2(k)
)

⋊Z/2.
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The constant 7200 in the statement of Proposition is achieved for the group G = (A5×A5)⋊Z/2,

which has no normal abelian subgroups. Indeed, if A is normal in G , then A ∩ (A5 ×A5) is

normal inA5×A5. But every normal subgroup in the direct product of two simple non-abelian

groups H and K is one of the groups 1H ×1K , 1H ×K , H ×1K , H ×K . If A is abelian, it must be

trivial.

d = 7: Then X is a blow up π : X → P2 at two points, and π is again Aut(X )-equivariant. Therefore,

J(Aut(X )) É 360.

d = 6: Then X is isomorphic to the surface obtained by blowing up P2
k

in three noncollinear points

p1, p2, p3. The set of (−1)-curves on X consists of six curves which form a hexagon Σ of lines in

the anticanonical embedding X ,→ P6
k

. One can easily show that Aut(X ) ∼= (k∗)2
⋊D6, where the

torus (k∗)2 comes from automorphisms of P2
k

that fix all the points pi , and D6 is the symmetry

group of Σ. Therefore, J(Aut(X )) É |D6| = 12.

d = 5: Then Aut(X ) ∼=S5, so J(Aut(X )) = 120.

d = 4: Then Aut(X ) ∼= (Z/2)4
⋊Γ, where |Γ| É 10 [Dol12, Theorem 8.6.8]. Thus J(Aut(X )) É 10 and we

are done.

d = 3: Then either |Aut(X )| É 120, or Aut(X ) ∼= (Z/3)3
⋊S4 (and X is the Fermat cubic surface) [Dol12,

Theorem 9.5.8]. But in the latter case J(Aut(X )) É 24.

d = 2: Then |Aut(X )| É 336 [Dol12, Table 8.9] and the assertion follows.

d = 1: Then |Aut(X )| É 144 [Dol12, Table 8.14], so we are done.

�

The second type of rational surfaces we shall work with are conic bundles. Recall, that a smooth

G-surface (X ,G) admits a conic bundle structure, if there is a G-morphism π : X → B , where B is a

smooth curve and each scheme fibre is isomorphic to a reduced conic in P2.

Let us also fix some notation. In this paper every automorphism of a conic bundle π : X → B

is supposed to preserve the conic bundle structure π. We shall write Aut(X ,π) for the corresponding

automorphism group. For every finite subgroup G ⊂ Aut(X ,π) there exists a short exact sequence of

groups

1−→GF −→G
ϕ

−→GB −→ 1,

where GB ⊂ Aut(B) ∼= PGL2(k), and GF acts by automorphisms of the generic fiber F . Since G is finite,

GF is a subgroup of PGL2(k). The following result will be used in the proof of Proposition 3.3. We

sketch the proof for the reader’s convenience.

Lemma 3.2 ([Ser09, Lemma 5.2]). Let g ∈G and h ∈GF be such that g normalizes the cyclic group 〈h〉

generated by h. Then g hg−1 is equal to h or to h−1.

Proof. We may assume that the order n of h is greater than 2. The automorphism h has two fixed

points on F , which can be characterized by the eigenvalue of h on their tangent spaces. Denote one

of these eigenvalues by λ; the other is λ−1 (these are primitive n-th roots of unity). The pair {λ,λ−1}
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is canonically associated with h, so the pair associated with g hg−1 is also {λ,λ−1}. But g hg−1 = hk ,

hence the pair associated with hk is {λk ,λ−k }. Hence k ≡±1 mod n. �

Proposition 3.3. Let X be a smooth rational surface with a conic bundle structureπ : X → B ∼=P1. Then

J(Aut(X ,π)) É 7200.

Proof. The argument is essentially due to J.-P. Serre, [Ser09, Theorem 5.1]. Let G ⊂ Aut(X ,π) be a finite

group. Then both GF and GB contain cyclic characteristic subgroups G ′
F = 〈h〉 and G ′

B of index at most

60. Pick g ∈G such that 〈ϕ(g )〉 =G ′
B . Since G ′

F is normal in G , it is normalized by g . Thus, by Lemma

3.2, either g hg−1 = h, or g hg−1 = h−1. In both cases g 2 commutes with h. The abelian subgroup

〈g 2,h〉 is normal in G , and from the inclusions

〈g 2,h〉 ⊂ 〈g ,h〉 ⊂ (GF )•〈g 〉 ⊂G

we see that its index is at most 2 ·60 ·60 = 7200. �

Corollary 3.4. Let X be a smooth rational surface. Then J(Aut(X )) É 7200.

Proof. Take a finite subgroup G ⊂ Aut(X ). Applying to X the G-Minimal Model Program, we may

assume that X is either a del Pezzo surface, or a rational surface with G-equivariant conic bundle

structure [DI09b, Theorem 5]. Now the statement follows from Propositions 3.1 and 3.3. �

Corollary 3.5 (Theorem 1.8). One has J(Cr2(k)) = 7200.

Proof. Take a finite subgroup G ⊂ Cr2(k). Regularizing its action (see [DI09a, Lemma 3.5]), we may

assume that G acts biregularly on a smooth rational surface X . So, the bound J(Cr2(k)) É 7200 follows

from Corollary 3.4. The equality is achieved for the group (A5 ×A5)⋊Z/2 acting on P1 ×P1. �

4. THE JORDAN CONSTANTS FOR THE PLANE CREMONA GROUPS OVER R AND Q

In recent years, growing attention has been paid to the group Cr2(R). In contrast with Cr2(C),

there are only partial classification results for its finite subgroups at the moment (see [Yas16]). How-

ever we are still able to calculate the Jordan constant J(Cr2(R)). As a by-product result, we also get

the Jordan constant for a closely related group Aut(P2(R)) of birational diffeomorphisms of P2
R

(see

Introduction), and for the group Cr2(Q).

Of course, from Lemma 2.1 (1) we immediately get

J(Cr2(R)) É J(Cr2(C)) = 7200.

Using some elementary representation theory arguments (Lemma 4.1), this bound can be drastically

improved. The next result is classical and we omit the proof.

Lemma 4.1. The following assertions hold.

(1) Any finite subgroup of GL2(R) and PGL2(R) is isomorphic either to Z/n or Dn (n Ê 2).
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(2) One has PGL3(R) ∼= SL3(R). Any finite subgroup of PGL3(R) is either cyclic, or dihedral, or one of

the symmetry groups of Platonic solids A4, S4 or A5.

Proposition 4.2. Let X be a smooth real R-rational surface with a conic bundle structure π : X → P1
R

.

Then

J(Aut(X ,π)) É 8.

Proof. Let G ⊂ Aut(X ,π) be a finite group. Extending scalars to C, we argue as in the proof of Proposi-

tion 3.3. The only difference is that GF and GB cannot be “exceptional” groups by Lemma 4.1 (1). So,

one can find a normal abelian subgroup in G of index at most 8. �

We next consider real del Pezzo surfaces. For completeness sake, we also compute the weak

Jordan constants for their automorphism groups. Note that for an algebraically closed field k of char-

acteristic 0 one has J(Aut X ) É 288 for every smooth del Pezzo surface X over k, see [PS16b, Corollary

3.2.5].

Proposition 4.3. Let X be a smooth real R-rational del Pezzo surface. Then one has

J(Aut(X )) É 120, J(Aut(X )) É 20.

Proof. We again consider each d = K 2
X

separately. Since J(Aut(X )) É J(Aut(XC)), in most cases it will be

enough to get a sharper bound for J(Aut(XC)), than in the proof of Proposition 3.1.

d = 9: Then X ∼=P2
R

and J(Aut(X )) = |A5| = 60 by Lemma 4.1 (2). Clearly, J(Aut(X )) = 12.

d = 8: If X is the blow up π : X → P2 at one point, then every finite subgroup G ⊂ Aut(X ) preserves

the exceptional divisor of π isomorphic to P1
R

. So, we conclude by Lemma 4.1 (1). Now assume

that XC
∼=P1

C
×P1

C
. Denote by Qr,s the smooth quadric hypersurface

{[x1 : . . . : xr+s ] : x2
1 + . . .+x2

r −x2
r+1 − . . .−x2

r+s = 0} ⊂Pr+s−1
R .

Then X is either Q3,1, or Q2,2. In the first case Aut(X ) ∼= PO(3,1). Recall that

O(3,1)= O(3,1)↑×〈±I 〉2,

where I is the identity matrix and O(3,1)↑ is the subgroup preserving the future light cone.

The latter group is isomorphic to PO(3,1) and we may identify subgroups of PO(3,1) with sub-

groups of O(3,1). Using classification of finite subgroups of O(3,1) given in [PSA80], we see

that every finite group G ⊂ PO(3,1) contains a normal abelian subgroup of index at most 60

and abelian (not necessarily normal) subgroup of index at most 12.

If X ∼= Q2,2
∼=P1

R
×P1

R
, then

Aut(X ) ∼=
(

PGL2(R)×PGL2(R)
)

⋊Z/2,

and the assertion easily follows from Lemma 4.1 (1).
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d = 7: Then X is a blow up π : X →P2 at two points. One of (−1)-curves on X is always defined over R

and Aut(X )-invariant, so we again conclude by Lemma 4.1 (1).

d = 6: One has J(Aut(X )) É J(Aut(X )) É J(Aut(XC)) É |D6| = 12.

d = 5: Then Aut(XC) ∼=S5, so J(Aut(X )) É 120 and J(Aut(X )) É 20. Note that there exists a real del Pezzo

surface X of degree 5 with Aut(X ) ∼=S5 (it can be obtained by blowing up P2
R at 4 real points in

general position). So, both bounds are sharp.

d = 4: As we already noticed, Aut(XC) ∼= (Z/2)4
⋊Γ, where |Γ| É 10. Thus,

J(Aut(X )) É J(Aut(X )) É J(Aut(XC)) É |Γ| É 10.

d = 3: From this moment we prefer to give more accurate bounds for J(Aut(X )). We will need these

bounds in the proof of Theorem 1.11, although not all of them are needed in the present proof.

One has the following possibilities for Aut(XC) (see [Dol12, Theorem 9.5.8]):

• |Aut(XC)| = 648, Aut(XC) ∼= (Z/3)3
⋊S4 and XC is the Fermat cubic surface

{

[x0 : x1 : x2 : x3] : x3
0 +x3

1 +x3
2 +x3

3 = 0
}

⊂P3.

Therefore, J(Aut(X )) É |S4| = 24. Note that Aut(X )∩ (Z/3)3 ∼= (Z/3)ℓ, where ℓ = 1,2, as

PGL4(R) does not contain (Z/3)3 (see e.g. [Yas16, Proposition 2.17]). Since every repre-

sentation S4 → GLℓ(F3) has non-trivial kernel, Aut(X ) contains an abelian subgroup of

index at most 12. We conclude that J(Aut(X )) É 12.

• |Aut(XC)| = 120 and Aut(XC) ∼=S5. Thus J(Aut(X )) É J(S5) = 120 and J(Aut(X )) É 20.

• |Aut(XC)| = 108 and Aut(XC) ∼= H 3(3)⋊Z/4, where H 3(3) is the Heisenberg group of

unipotent 3× 3-matrices with entries in F3. Being a group of order 27, the Heisenberg

group H 3(3) has non-trivial center, which must be a normal subgroup of Aut(XC). There-

fore, J(Aut(X )) É 108/3 = 36. On the other hand, H 3(3) contains an abelian subgroup of

order 9, so J(Aut(X )) É 108/9= 12.

• |Aut(XC)| = 54 and Aut(XC) ∼=H 3(3)⋊Z/2. Similarly, one has J(Aut(X )) É 54/9= 6.

• |Aut(XC)| É 24. Then every non-trivial cyclic subgroup of Aut(X ) has index at most 12.

d = 2: Recall that the anticanonical map ψ|−KX | : X → P2
R

is a double cover branched over a smooth

quartic B ⊂P2
R

. It is well known that Aut(X ) ∼= Aut(B)×〈γ〉, where γ is the Galois involution of

the double cover (the Geiser involution). Since Aut(B) ⊂ PGL3(R) is a finite group, we can apply

Lemma 4.1 (2). Namely, if Aut(B) is “exceptional”, take A = 〈γ〉 as a desired normal abelian

subgroup. If Aut(B) ∼= Z/n, take A = Aut(X ). If Aut(B) ∼= Dn , take A = Cn ×〈γ〉. In all the cases

J(Aut(X )) É 60 and J(Aut(X )) É 12.

d = 1: Let X be a real del Pezzo surface of degree 1. Recall that the linear system |−KX | is an elliptic

pencil whose base locus consists of one point, which we denote by p. Clearly, p ∈ X (R), so we

have the natural faithful representation

Aut(X ) → GL(Tp X ) ∼= GL2(R).
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Thus Aut(X ) is either cyclic, or dihedral, and J(Aut(X )) É 2.

�

Corollary 4.4 (Theorem 1.9). One has

J(Cr2(R)) = 120, J(Cr2(R)) = 20.

Proof. Let G ⊂ Cr2(R) be a finite subgroup. By [DI09b, Theorem 5], we may assume that G acts biregu-

larly on a smooth real R-rational surface, which is either a del Pezzo surface, or a G-equivariant conic

bundle. From Propositions 4.2 and 4.3, one gets J(Cr2(R)) É 120 and J(Cr2(R)) = 20. The equalities are

given by the group S5, which occurs as the automorphism group of a real del Pezzo surface, obtained

by blowing up P2
R

at four real points in general position. �

Corollary 4.5 (Theorem 1.10). One has

J(Cr2(Q)) = 120, J(Cr2(Q)) = 20.

Proof. Clearly, J(Cr2(Q)) É J(Cr2(R)), J(Cr2(Q)) É J(Cr2(R)). Since S5 can be realized as the automor-

phism group of a degree 5 del Pezzo surface over Q, we are done. �

Corollary 4.6 (Theorem 1.11). One has

J
(

Aut(P2(R))
)

= 60, J
(

Aut(P2(R))
)

= 12,

J(Q3,1(R)) = 60, J(Q3,1(R)) = 12.

Proof. Take a finite subgroup G ⊂ Aut(P2(R)) and regularize its action on some R-rational surface X .

Since we want X (R) to be homeomorphic to RP2, we may assume by [Kol97, Corollary 3.4.] that X is

isomorphic to P2
R blown up at k pairs of complex conjugate points, where k = 0, . . . ,4 and d = K 2

X =

9−2k. From the proof of Proposition 4.3, one easily gets that J(Aut(X )) É 60 and J(Aut(X )) É 12 in all the

cases, except d = k = 3, Aut(XC) ∼=S5, and d = 5, k = 2, Aut(XC) ∼=S5. To conclude that J(Aut(P2(R))) =

60 and J(Aut(P2(R))) = 12, it suffices to show thatS5 cannot occur as the automorphism group of such

real surfaces.

If d = 5, then S5 is the automorphism group of the Petersen graph of (−1)-curves on XC. In our

case there are only 2 real lines on X , so Aut(X ) cannot be isomorphic to S5.

Assume that d = k = 3 and Aut(X ) ∼=S5. It is easy to see that there are exactly 3 real lines on X .

Let τ ∈ Aut(X ) be of order 5. Then τ fixes each real line on X . Choose coordinates [x0 : . . . : x3] in P3
C

such that one of these lines is given by x0 = x1 = 0. Then the equation of XC has the form

x0q1(x2, x3)+x1q2(x2, x3)+
∑

i+ j=2

xi
0x

j
1 ai j (x2, x3)+ f (x0, x1) = 0,

where deg f = 3. The quadratic forms q1 and q2 must be invariant with respect to an automorphism

of order 5 of the line x2 = x3 = 0. Thus q1 = q2 = 0 and X is singular, so we get a contradiction with

Aut(X ) ∼=S5.
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Similarly, given a finite subgroup G ⊂ Aut(Q3,1(R)), we may assume that G acts biregularly either

on a smooth R-rational conic bundle X , or on an R-rational del Pezzo surface X . In the former case

we are done by Proposition 4.2. In the latter case, to preserve the real locus structure, the degree of X

should be 8, 6, 4, or 2. From the proof of Proposition 4.3, we see that J(Aut(X )) É 60 and J(Aut(X )) É 12

in these cases. As usual, the equality is given by the group A5 acting on Q3,1. �
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