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RANDOM WALKS, WPD ACTIONS, AND THE CREMONA

GROUP

JOSEPH MAHER, GIULIO TIOZZO

Abstract. We study random walks on groups of isometries of non-proper
δ-hyperbolic spaces under the assumption that at least one element in the
group satisfies Bestvina-Fujiwara’s WPD condition. We show that in this case
typical elements are WPD, and the Poisson boundary coincides with the Gro-
mov boundary. Moreover, we show that the random walk satisfies a form of
asymptotic acylindricality, and we use this to show that the normal closure
of random elements yields almost surely infinitely many different normal sub-
groups. Moreover, the probability that the normal closure is free tends to
1 if and only if the maximal normal subgroup coincides with the center of
the group. We apply such techniques to the Cremona group, thus obtaining
that the dynamical degree of random Cremona transformations grows expo-
nentially fast, producing many different normal subgroups, and identifying the
Poisson boundary. We also give a new identification of the Poisson boundary
of Out(Fn). Our methods give bounds on the rates of convergence for these
results.

1. Introduction

A great deal of information on the geometric and algebraic properties of a group
G can be derived by its isometric actions on a metric space (X, d). Following
Gromov, a metric space is δ-hyperbolic if geodesic triangles are δ-thin. Recall that
a metric space is proper is closed balls are compact. If the groupG is not hyperbolic,
then it cannot admit a proper, cocompact action on a hyperbolic metric space, but
there are many interesting actions on nonproper hyperbolic metric spaces.

Notable examples include relatively hyperbolic groups which act on the coned-
off Cayley graph, right-angled Artin groups, acting on the extension graph; the
mapping class group of a surface, which acts on the curve complex ; the group
Out(Fn) of outer automorphisms of the free group, and the Cremona group of
birational transformations of the complex projective plane.

We are going to be interested in properties of random elements of G, defined by
constructing a random walk on G. Namely, let µ be a probability measure on G,
and let (gn) be a sequence of independent, identically distributed elements of G,
with distribution µ. We are going to study the random product

wn := g1 . . . gn

of elements of G. The group G need not be countable, but we will only consider
probability distributions µ with countable support.

Recall that a δ-hyperbolic space X is equipped with the Gromov boundary ∂X
given by asymptote classes of quasigeodesic rays. Under mild conditions on µ, we
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proved in [MT16] that almost every sample path (wnx) converges to a point on the
boundary ∂X , and that the random walk has positive drift.

Since the spaces on which G acts are not proper, some weak notion of properness
is still needed in order to be able to extract information on the group from the
action, and several candidate notions have been proposed in the last two decades.

First of all, following [Sel97], [Bow08], [Osi16], the action of a group G on X is
acylindrical if for any two points x, y in X which are sufficiently far apart, the set
of group elements which coarsely fixes both x and y has bounded cardinality. More
precisely, given a constant K > 0, we define the joint coarse stabilizer of x and y
as

StabK(x, y) := {g ∈ G : d(x, gx) 6 K and d(y, gy) 6 K}.
Then the action of G on X is acylindrical if for any K > 0, there are constants
R(K) and N(K) such that for all points x and y in X with d(x, y) > R(K), we
have the following bound (where #|A| is the cardinality of A):

#|StabK(x, y)| 6 N(K). (1)

This condition is quite useful, and it is verified in certain important cases (e.g. the
action of the mapping class group on the curve complex [Bow08], or the action of
a RAAG on its extension graph [KK14]). Under the assumption of acylindricality,
we proved in [MT16] that the Gromov boundary of X is the Poisson boundary of
the random walk.

However, acylindricality is too strong a condition in several other cases, such
as the action of Out(Fn) on its related complexes, and the Cremona group. For
this reason, in this paper we will consider group actions which satisfy the weak
proper discontinuity (WPD) property, a weaker notion introduced by Bestvina and
Fujiwara [BF02] in the context of mapping class groups. Intuitively, an element is
WPD if it acts properly on its axis. In formulas, an element g ∈ G is WPD if for
any x ∈ X and any K > 0 there exists N > 0 such that

#|StabK(x, gNx)| < +∞. (2)

In other words, the finiteness condition is not required of all pairs of points in the
space, but only of points along the axis of a given loxodromic element.

Let µ be a probability measure on the group G. We say that µ is countable if
the support of µ is countable, and we denote as Γµ the semigroup generated by the
support of µ. In this paper we show that as long as the semigroup Γµ contains at
least one WPD element, then generic elements have all the properness properties
one could wish for. In particular, one can identify the Poisson boundary, and study
the normal closure of random elements. As an application, we will use this condition
to derive results on the Cremona group.

1.1. Genericity of WPD elements. Maher [Mah11] and Rivin [Riv08] consid-
ered random walks on the mapping class group acting on the curve complex, and
showed that pseudo-Anosov mapping classes are typical for random walks. More
generally, in [MT16], we showed that for a group G acting non-elementarily on a
Gromov hyperbolic space X , loxodromic elements are typical for the random walk:
i.e., the probability that the random product of n elements is loxodromic tends to
one as n tends to infinity. In this paper, we prove that as long as there is one WPD
element in the support of the measure generating the random walk, then WPD
elements are generic.
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We say that a measure µ is non-elementary if Γµ contains at least two indepen-
dent loxodromic elements, and is bounded if for some x ∈ X the set (gx)g∈supp µ is
bounded in X . Finally, µ is WPD if Γµ contains an element h which is WPD in G.

We will show that generic elements are WPD with an explicit bound on the rate
of convergence: we say that a sequence of numbers (pn) tends to 1 with square root

exponential decay if there are constants B > 0 and c < 1 such that pn > 1−Bc
√
n.

Theorem 1.1. (Genericity of WPD elements.) Let G be a group acting on a
Gromov hyperbolic space X, and let µ be a countable, non-elementary, bounded,
WPD probability measure on G. Then

P(wn is WPD) → 1

as n→ ∞, with square root exponential decay.

In fact, we obtain that most random elements have bounded coarse stabilizer,
where the bound does not depend on the point chosen. We call this property
asymptotic acylindricality. We prove the following estimate on the joint coarse
stabilizer.

Theorem 1.2. (Asymptotic acylindricality.) Let G be a group acting on a Gromov
hyperbolic space X. Let µ be a countable, non-elementary, bounded, WPD proba-
bility measure on G, and let x ∈ X. Then for any K > 0 there is an N > 0 such
that

P(#|StabK(x,wnx)| 6 N) → 1

with square root exponential decay, where the implicit constants depend on K.

1.2. Normal closure. Another application of our methods is the study of normal
groups obtained by taking the normal closure of a random element wn.

In order to state the theorem, we need some assumption. We call a measure µ
reversible if the semigroup Γµ generated by the support of µ is indeed a group. This
condition is satisfied e.g. when the support of µ is closed under taking inverses.
Given a subgroup H < G, we define its injectivity radius as

inj(H) := inf
g∈H\{1}

x∈X

d(x, gx).

We prove that the injectivity radius of the normal closure of a random element is
almost surely unbounded, and taking the normal closure of random elements yields
many different normal subgroups.

Theorem 1.3. (Abundance of normal subgroups.) Let G be a group acting on a
Gromov hyperbolic space X, and let µ be a countable, non-elementary, reversible,
bounded, WPD probability measure on G. Then there exists k such that, if we
consider the normal closure Nn(ω) := 〈〈wkn〉〉 we have:

(1) for any R > 0 the probability that inj(Nn) > R tends to 1 as n→ ∞;
(2) for almost every sample path ω, the sequence

{N1(ω), N2(ω), . . . , Nn(ω), . . . }
contains infinitely many different normal subgroups of G.

Our techniques also allow us to determine the value of k in the previous result.
Moreover, one can determine the group structure of the normal closure of a random
element, in particular whether it is free.
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To be precise, let us denote as Eµ := {g ∈ Γµ : gx = x for all x ∈ ∂X} the
pointwise stabilizer of ∂X . Note that if G = Γµ, then Eµ = E(G) is the maximal
finite normal subgroup of G (i.e., the largest finite subgroup of G which is normal:
that such a subgroup exists is a consequence of the WPD property).

Since Eµ is normal in Γµ, conjugacy yields a homomorphism

Γµ → Aut Eµ.

Let us denote as Hµ the image of Γµ in Aut Eµ. The size of Hµ will determine
the structure of the normal closure of a random element, in particular whether it
is free.

Theorem 1.4. (Structure of the normal closure.) Let G be a group acting on a
Gromov hyperbolic space X, and let µ be a countable, non-elementary, reversible,
bounded, WPD probability measure on G. Let us denote as Hµ the image of Γµ in
Aut Eµ. Then:

(1) the probability that the normal closure 〈〈wn〉〉 of wn in G is free satisfies

P(〈〈wn〉〉 is free) →
1

#Hµ

as n→ ∞.
(2) Moreover, if k = #Hµ, then

P(〈〈wkn〉〉 is free) → 1

as n→ ∞, and indeed there exist constant B > 0, c < 1 such that

P(〈〈wkn〉〉 is free) > 1−Bc
√
n

for any n.

Note that k = #Hµ is also precisely the k in Theorem 1.3.
Moreover, as a corollary of Theorem 1.4, the probability that the normal closure

of a random element is free detects the following algebraic property of the group:

Corollary 1.5. If Γµ = G, then

P (〈〈wn〉〉 is free) → 1 as n→ ∞
if and only if the maximal finite normal subgroup E(G) equals the center Z(G).

In particular, we will show later that this is the case for mapping class groups.

1.3. The Poisson boundary. The well-known Poisson representation formula ex-
presses a duality between bounded harmonic functions on the unit disk and bounded
functions on its boundary circle. Indeed, bounded harmonic functions admit ra-
dial limit values almost surely, while integrating a boundary function against the
Poisson kernel gives a harmonic function on the interior of the disk.

This picture is intimately connected with the geometry of SL2(R); then in the
1960’s Furstenberg and others extended this duality to more general groups. In
particular, let G be a countable group of isometries of a Riemannian manifold X ,
and let us consider a probability measure µ on G. One defines µ-harmonic functions
as functions on G which satisfy the mean value property with respect to averaging
using µ; in formulas f : G→ R is µ-harmonic if

f(g) =
∑

h∈G
f(gh) µ(h) ∀g ∈ G.
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Following Furstenberg [Fur63], a measure space (M, ν) on which G acts is then a
boundary if there is a duality between bounded, µ-harmonic functions on G and
L∞ functions on M .

A related way to interpret this duality is by looking at random walks on G. In
many situations, (e.g. when X is hyperbolic) the space X is equipped naturally
with a topological boundary ∂X , and almost every sample path (wnx) converges
to some point on the boundary of X . Hence, one can define the hitting measure of
the random walk as the measure ν on ∂X given on a subset A ⊆ ∂X by

ν(A) := P

(

lim
n→∞

wnx ∈ A
)

.

A fundamental question in the field is then whether the pair (∂X, ν) equals indeed
the Poisson boundary of the random walk (G,µ), i.e. if all harmonic functions on
G can be obtained by integrating a bounded, measurable function on ∂X .

In the proper case, the classical criteria in order to identify the Poisson boundary
can be applied and one gets that the Gromov boundary (∂X, ν) with the hitting
measure is a model for the Poisson boundary. In the non-proper case, the classical
entropy criterion is not expected to work, as there may be infinitely many group
elements contained in a ball of fixed diameter.

We prove, however, that as long as Γµ contains a WPD element, the Poisson
boundary indeed coincides with the Gromov boundary.

Theorem 1.6. (Poisson boundary for WPD actions.) Let G be a countable group
which acts by isometries on a δ-hyperbolic metric space (X, d), and let µ be a
non-elementary probability measure on G with finite logarithmic moment and finite
entropy. Suppose that there exists at least one WPD element h in the semigroup
generated by the support of µ. Then the Gromov boundary of X with the hitting
measure is a model for the Poisson boundary of the random walk (G,µ).

The result extends our earlier result in [MT16] for acylindrical actions.

1.4. The Cremona group. The Cremona group is the group G = Bir P
2(C) of

birational transformations of the projective plane.
Let f : P2(C) → P2(C) be a birational map. Then f is given in homogeneous

coordinates by
f([x : y : z]) := [P : Q : R]

where P,Q,R are polynomials of degree d without common factors. We call d the
degree of f , and we denote it as deg f .

Now, one notes that deg(fn+m) 6 deg(fn) · deg(fm), but the equality need not
hold: the most famous example is the Cremona involution

g([x : y : z]) := [yz : xz : xy]

which has degree 2, but g2 is the identity; the Cremona group is in fact generated
by degree 1 transformations and the Cremona involution. Hence, following [Fri95],
[RS97] we define the dynamical degree of f as

λ(f) := lim
n→∞

(deg fn)
1/n

.

The dynamical degree is always an algebraic integer [DF01], and it is related to the
topological entropy by htop(f) 6 logλ(f). In fact, equality is conjectured [Fri95].

We are interested in the properties of random Cremona transformations. Let us
fix a probability measure µ on the Cremona group, with countable support. Then
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let us draw a sequence (gn) of elements independently with distribution µ, and
consider the random product

fn := g1g2 . . . gn.

It is known that the Cremona group acts by isometries on an infinite dimensional
hyperbolic space which is contained in the Picard-Manin space (see Section 3).
Using such an action, we will determine asymptotic properties for random walks on
the Cremona group. A measure µ on the Cremona group has finite first moment if
∫

deg f dµ(f) < +∞, and is bounded if there exists D < +∞ such that deg f 6 D
for any f ∈ supp(µ).

First of all, we prove that the degree and dynamical degree of a random Cremona
transformation grow exponentially fast.

Theorem 1.7. Let µ be a countable non-elementary probability measure on the
Cremona group with finite first moment. Then there exists L > 0 such that for
almost every random product fn = g1 . . . gn of elements of the Cremona group we
have the limit

lim
n→∞

1

n
log deg(fn) = L.

Moreover, if µ is bounded then for almost every sample path we have

lim
n→∞

1

n
logλ(fn) = L.

Proof. The Cremona group acts by isometries on the (half) hyperboloid HP2 inside
the Picard-Manin space. The space HP2 is a Gromov hyperbolic metric space, hence
we can apply our techniques, and in particular for any Cremona transformation f
one has deg(f) = coshd(x, fx) if x = [H ]. The first claim follows from the fact that
the drift of the random walk is positive (Theorem 2.5 (2)). The second claim follows
from the fact that translation length of random elements grows linearly (Theorem
4.1) and that the translation length τ(f) and the dynamical degree are related by
the equation logλ(f) = τ(f). �

In [CL13], Cantat and Lamy showed that there exist infinitely many distinct
normal subgroups of G, thus proving a celebrated conjecture of Mumford. Using
our techniques, we will prove a random walk version of their theorem, namely
that for almost every sample path the normal closures of random elements produce
infinitely many different normal subgroups of the Cremona group.

For this group, the injectivity radius of a subgroup H can also be defined as

inj(H) := inf
f∈H\{1}

deg f.

Let us state the consequence of Theorems 1.3 and 1.4 when applied to the Cremona
group.

Theorem 1.8. Let µ be a countable non-elementary, reversible, bounded, WPD
probability measure on the Cremona group. Then there exists k such that, if we
consider the normal closure Nn(ω) := 〈〈fkn〉〉 we have:

(1) the probability that Nn is free tends to 1 as n→ ∞;
(2) for any R > 0 the probability that inj(Nn) > R texnds to 1 as n→ ∞;
(3) for almost every sample path ω, the sequence

{N1(ω), N2(ω), . . . , Nn(ω), . . . }



RANDOM WALKS, WPD ACTIONS, AND THE CREMONA GROUP 7

contains infinitely many different normal subgroups of Bir P2(C).

Note that the action of the Cremona group on the infinite-dimensional hyper-
bolic space is not acylindrical, but WPD elements actually exist: in particular, by
Shepherd-Barron [SB13], a loxodromic map is WPD if and only if it is not conjugate
to a monomial map (see also [Ure18]). Moreover, by ([Lon16], Proposition 4), for
each n > 2, the transformation given in affine coordinates by (x, y) 7→ (y, yn−x) is
WPD. We wonder if one can take k = 1 in the above result for the Cremona group.

Finally, we have the following result concerning the Poisson boundary, which
follows immediately from Theorem 1.6. Let us denote as HP2 the hyperboloid
inside the Picard-Manin space of P2(C) (see Section 3 for details).

Theorem 1.9. Let µ be a countable, non-elementary, WPD probability measure
on the Cremona group with finite entropy and finite logarithmic moment. Then the
Gromov boundary of the hyperboloid HP2 with the hitting measure is a model for
the Poisson boundary of (G,µ).

A related notion to WPD is the notion of tight element from [CL13]. In fact, in
order to produce new normal subgroups, Cantat and Lamy take the normal closure
of tight elements. Let us note that in the Cremona group, centralizers of loxodromic
elements are virtually cyclic; as a consequence, if an element is tight then it is also
WPD.

Note that for simplicity we have dealt with the Cremona group over C, but
Theorems 1.7, 1.8, and 1.9 are still true (and with the same proofs) for the Cremona
group over any algebraically closed field k.

1.5. Tame automorphism groups. Other groups arising in algebraic geometry
admit an action on a non-proper δ-hyperbolic space with WPD elements.

First of all, the group Aut(C2) of polynomial automorphisms of C2 (see [FL10]
and references therein, as well as [MO15]) can be written as an amalgamated prod-
uct of two of its subgroups, hence it acts on the corresponding Bass-Serre tree, which
is a Gromov-hyperbolic space; in fact, for this action every loxodromic element is
WPD, but the action is not acylindrical.

Remarkably, Lamy and Przytycki recently extended this work to three variables.
They considered the tame automorphism group Tame(C3), which is the group gen-
erated by affine and elementary automorphisms of C3 (see [LP16] for a precise
definition), and showed that this group also acts on a Gromov-hyperbolic complex
and there are WPD elements, so the methods of the present paper apply.

Let us finally remark that much less is known about the structure of the Cremona
group in three variables, and these methods do not easily apply since there exist two
linearly independent divisor classes with positive self-intersection, hence the Picard-
Manin space contains a two-dimensional flat, so the analog of the hyperboloid is no
longer δ-hyperbolic.

1.6. Outer automorphisms of the free group. Another application of our
setup is to the group Out(Fn) of outer automorphisms of a finitely generated free
group Fn of rank n > 2.

There are several hyperbolic graphs on which Out(Fn) acts: the main two are
the free factor complex and the free splitting complex. In particular, the free factor
complex FF(Fn) is hyperbolic by work of Bestvina and Feighn [BF14]. Moreover,
an element is loxodromic on FF(Fn) if and only if it is fully irreducible, and all fully
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irreducible elements satisfy the WPD property. However, it is not known whether
the action of Out(Fn) on the free factor complex is acylindrical.

On the other hand, the free splitting complex is also hyperbolic, but the action
on the free splitting complex FS(Fn) is known not to be acylindrical, by work
of Handel and Mosher [HM13]. Moreover, an element is loxodromic if and only
if it admits a filling lamination pair. This is a weaker condition than being fully
irreducible, and the stabilizer of the quasi-axis of a loxodromic element need not be
virtually cyclic. Thus, for this action it is not true that every loxodromic element
satisfies the WPD property. However, by Theorem 1.1 even for this action WPD
elements are generic for the random walk.

We have the following identification for the Poisson boundary of Out(Fn).

Theorem 1.10. Let µ be a measure on Out(Fn) such that the semigroup generated
by the support of µ contains at least two independent fully irreducible elements.
Moreover, suppose that µ has finite entropy and finite logarithmic moment for the
simplicial metric on the free factor complex. Then the Gromov boundary of the free
factor complex is a model for the Poisson boundary of (G,µ).

Proof. By [BF14], the action of fully irreducible elements on the free factor complex
is WPD. Hence, the claim follows by Theorem 1.6. �

Note that the identification of the Poisson boundary for Out(Fn) has been ob-
tained by Horbez [Hor16] using the action of Out(Fn) on the outer space CVn. In
our theorem above, the moment condition required is a bit weaker, as we only need
the logarithmic moment condition to hold with respect to the metric on FF(Fn)
instead of the metric on CVn (recall that there is a coarsely defined Lipschitz map
CVn → FF(Fn)).

1.7. Mapping class groups. Let Sg,n be a topological surface with genus g and
n punctures, and let Mod(Sg,n) be its mapping class group, i.e. the group of
homeomorphisms of Sg,n, up to isotopy. The mapping class group acts on a locally
infinite, δ-hyperbolic graph, known as the curve complex [MM99]. Loxodromic
elements for this action are the pseudo-Anosov mapping classes, and as they are all
WPD elements, all results in our paper apply.

As an application of Theorem 1.4, we prove that the normal closure of random
mapping classes is a free group, answering a question of Margalit [Mar18, Problem
10.11].

Theorem 1.11. Let G = Mod(Sg,n) be the mapping class group of a surface of
finite type, and suppose that G is infinite. Let µ be a probability measure on G with
bounded support in the curve complex and such that Γµ = G, and let wn be the
nth step of the random walk generated by µ. Then the probability that the normal
closure 〈〈wn〉〉 is free tends to 1 as n→ ∞.

The result follows from Theorem 1.4 and the fact that, by the Nielsen realiza-
tion theorem, the maximal normal subgroup of Mod(Sg,n) always equals its center
(which is trivial unless the mapping class group contains a central hyperelliptic
involution). See Section 11.2 for details. Note that in fact the action is acylindrical
[Bow08], hence some applications such as the Poisson boundary already follow from
[MT16].
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1.8. Matching estimates and rates. In order to obtain our results, we need to
show that a random element has finite joint coarse stabilizer, and to do so we recur
to what we call matching estimates.

Following [CM15], we say that two geodesics γ and γ′ in X have a match if there
is a subsegment of γ close to a G-translate of a subsegment of γ′ (see Definition
7.4).

Let x ∈ X be a basepoint and (wn) be a sample path. The two key estimates
we will prove and use are the following.

(1) Matching estimate (Proposition 7.6): given a loxodromic element g, we
show that the probability that the geodesic [x,wnx] has a match with a

translate of the axis of g is at least 1−Bc
√
n.

(2) Non-matching estimate (Proposition 8.2): given a geodesic segment η in X
of length s, the probability that there is a match between [x,wnx] and a

G-translate of η is at most Bc
√
s.

The rate that we obtain comes from the following estimate, which is given in
detail in Section 7. If T is an ergodic transformation of a probability space (Ω,P),
then for any measurable set A of positive measure, the measure of An = A∪T−1A∪
· · ·T−nA tends to one as n tends to infinity. However, for arbitrary measurable
sets, this rate of convergence can be arbitrarily slow. The ergodic transformation
we shall consider is the shift map acting ergodically on the bi-infinite step space of
the random walk, which is just the product probability space (G,µ)Z. In [MT16]
we showed that the image of a random walk on G in X converges to the Gromov
boundary ∂X almost surely, and this gives a map ∂+ : (G,µ)Z → ∂X , which we call
the forward boundary map. Similarly, the image of a random walk in reverse time
also converges to the boundary, and we shall call this the backward boundary map.
We shall consider sets A whose images under the forward and backward boundary
maps contain an open set in the boundary, and we shall show that for these sets,
P(An) → 1 with square root exponential decay.

1.9. Asymmetric elements. Another important tool in our proofs is the notion
of asymmetric element, which was introduced in [MS18]. We call a loxodromic
element g ∈ G asymmetric if any element which coarsely stabilizes a segment of
the axis of g actually coarsely stabilizes the set {gix}i∈Z (see Definition 9.1 for the
precise statement). In [MS18] it is proven that if the action of G is acylindrical,
then asymmetric elements are generic. In this paper, we generalize this result to
WPD actions, and use it to prove the other results.

Let GWPD be the set of WPD elements in G. For a loxodromic g ∈ G, let
us denote as Λ(g) := {λ+g , λ−g } the two fixed points of g on ∂X . We denote as

EG(g) the stabilizer of Λ(g) as a set, and as E+
G(g) the pointwise stabilizer of Λ(g).

Moreover, for a subgroup H < G we denote as

EG(H) :=
⋂

H∩GWPD

EG(h)

the intersection of all EG(h) as h lies in H∩GWPD (a priori, this set may be smaller
than the set of WPD elements for the action of H on X). Note that EG(G) is the
maximal finite normal subgroup of G.

We have the following characterization of EG(wn) for generic elements wn. Let
Eµ := E+

G(Γµ).
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Theorem 1.12. Given δ > 0 there are constants K and L with the following
properties. Let G be a group acting by isometries on a δ−hyperbolic space X, and let
µ be a countable, non-elementary, reversible, bounded, WPD probability distribution
on G. Then there are constants B > 0 and c < 1 such that the probability that wn
is loxodromic, (1, L,K)-asymmetric, and WPD with

EG(wn) = E+
G(wn) = 〈wn〉⋉ Eµ

is at least 1−Bc
√
n.

Note that the action of Eµ on EG(wn) is precisely responsible for the value of k
in Theorems 1.3 and 1.4. Indeed, one obtains that the cyclic group 〈wn〉 is normal
in EG(wn) if and only if the image of wn in Aut Eµ is trivial. Now, the random
walk on Γµ pushes forward to a random walk on the finite group Aut Eµ, and this
random walk equidistributes on the image of Γµ inside Aut Eµ, which we denote
as Hµ. This explains the asymptotic probability of 1

#Hµ
in Theorem 1.4.

1.10. Further questions. We conclude with a few questions for further explo-
ration.

(1) Can one drop “reversible” as an hypothesis in Theorem 1.4?
(2) Can one take k = 1 in Theorems 1.3 and 1.4 when G is the Cremona group?
(3) Do our results still hold for measures µ with finite exponential moment,

rather than bounded measures?
(4) Is the actual rate of convergence in Theorems 1.1, 1.2, and 1.4 exponential

(i.e. of order cn for some c < 1) instead of just of order c
√
n?

(5) Does the radius of injectivity inj(Nn) typically goes to infinity as n → ∞,
and at what rate?

We believe that the answers to all these questions should be positive, but we do
not attempt to solve them here.
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thank Carolyn Abbott, Jeffrey Diller, Igor Dolgachev, Mattias Jonsson, Stephane
Lamy and Piotr Przytycki for useful discussions and comments. The first named
author acknowledges support from the Simons Foundation and PSC-CUNY. The
second named author is partially supported by NSERC and the Alfred P. Sloan
Foundation.

2. Background material

Let X be a δ-hyperbolic metric space, and let G be a group of isometries of X .
Let µ be a probability measure on G. This defines a random walk by choosing for
each n an element gn of G with distribution µ independently of the previous ones,
and considering the product

wn := g1 . . . gn.

The sequence (wn)n>0 is called a sample path of the random walk, and we are
interested in the asymptotic behaviour of typical sample paths.
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2.1. Isometries of hyperbolic spaces. Recall that isometries of a δ-hyperbolic
space (even if it is not proper) can be classified into three types; in particular,
g ∈ Isom(X) is:

• elliptic if g has bounded orbits;
• parabolic if it has unbounded orbits, but zero translation length;
• loxodromic (or hyperbolic) if it has positive translation length.

Here, the translation length of g ∈ Isom(X) is the quantity

τ(g) := lim
n→∞

d(gnx, x)

n

where the limit always exists and is independent of the choice of x. Moreover,
a loxodromic element has two fixed points on the Gromov boundary of X , one
attracting and one repelling.

A semigroup inside Isom(X) is non-elementary if it contains two loxodromic
elements which have disjoint fixed point sets on ∂X .

We will use the following elementary properties of δ-hyperbolic spaces, which we
state without proof. A quasi-axis for a loxodromic isometry g ofX is a quasigeodesic
which is invariant under g.

Proposition 2.1. Given a constant δ > 0, there is a constant K1 such that every
loxodromic isometry of a δ-hyperbolic space has a (1,K1)-quasi-axis.

By abuse of notation, we will refer to a choice of (1,K1)-quasi-axis as an axis
for g. We will use the following fellow-travelling properties of quasigeodesics in
Gromov hyperbolic spaces, whose proofs we omit.

If two parameterized geodesics have endpoints which are close together, then
they are (parameterized) fellow travelers.

Lemma 2.2. There is a constant K ′, which only depends on δ, such that for any
two geodesics γ and γ′ with unit speed parameterizations, for any constant K > 0
and a 6 b 6 c, if d(γ(a), γ′(a)) 6 K and d(γ(c), γ′(c)) 6 K, then d(γ(b), γ′(b)) 6
K +K ′.

Given a finite geodesic γ = [x, y], let γ−K = γ \ (BK(x) ∪BK(y)). Then we have:

Proposition 2.3. Given δ > 0 and K1 > 0, there is a constant L such that for
any K > 0 and for any two (1,K1)-quasigeodesics γ and η in a δ-hyperbolic space,
with endpoints distance at most K apart, any point on γ−K lies within distance at
most L from a point on η.

Let us recall that given x, y ∈ X and R > 0, we define the shadow Sx(y,R) as

Sx(y,R) := {z ∈ X : (z · y)x > d(x, y)−R}.

The number r = d(x, y)−R is called the distance parameter of the shadow.

Proposition 2.4. Given constants δ > 0 and K1, there are constants D and L with
the following properties. Let A = Sx(y,R) and B = Sx(z,R) be disjoint shadows in
a δ-hyperbolic space X, and let γ1 and γ2 be (1,K1)-quasigeodesics each with one
endpoint in A and the other endpoint in B. Then γ1 \(Sx(y,R+D)∪Sx(x,R+D))
is contained in an L-neighbourhood of γ2 \ (Sx(y,R+D) ∪ Sx(x,R +D)).
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2.2. Random walks on weakly hyperbolic groups. In [MT16], we established
many properties of typical sample paths for random walks on general groups of
isometries of δ-hyperbolic spaces. Namely:

Theorem 2.5 ([MT16]). Let µ be a countable, non-elementary measure on a group
of isometries of a δ-hyperbolic metric space X, and let x ∈ X. Then

(1) almost every sample path (wnx) converges to some point ξ in the Gromov
boundary of X;

(2) if µ has finite first moment in X, there exists L > 0 such that for almost
all sample paths we have

lim
n→∞

d(wnx, x)

n
= L;

(3) moreover, if µ is bounded, there exists L > 0, B > 0 and c < 1 such that
the translation length grows linearly with exponential decay:

P(τ(wn) > nL) > 1−Bcn.

Note that in [MT16] the previous result is proven under the assumption that X
is separable, i.e. it contains a countable dense set. However, since the measure µ is
countable one can drop the separability assumption, as remarked in [GST, Remark
4]. In fact, the only point where separability is used is to prove convergence to the
boundary, and one can prove it for general metric spaces from the separable case
and the following fact, whose proof we write here in detail.

Lemma 2.6 ([GST, Remark 4]). Let Γ be a countable group of isometries of a δ-
hyperbolic metric space X. Then there exists a separable metric space X ′ (in fact, a
simplicial graph with countably many vertices) and a Γ-equivariant quasi-isometric
embedding i : X ′ → X. As a consequence, i extends continuously to a Γ-equivariant
inclusion ∂X ′ → ∂X between the Gromov boundaries.

Proof. Consider the orbit Γx of some point x ∈ X , and pick for each pair of points
p1, p2 ∈ Γx a geodesic γ between p1 and p2. On each such geodesic, pick a maximal
collection of points such that any two points are at least 10δ apart. Let Y be the
union of the Γ-orbits of all these additional points together with Γx.

Now, for each pair of points of Y which have distance at most 100δ in X , pick
a geodesic between them, and let us denote as E the union of all Γ-orbits of such
geodesics. This way we obtained a Γ-invariant collection Y of points of X , and a
Γ-invariant collection E of geodesic segments connecting them, where each segment
has length 6 100δ. Let us define the graph X ′ to have Y as vertex set, and to
have one edge for each geodesic in E . The group Γ acts on the graph X ′, which
has countably many vertices and edges, and so is separable. Furthermore, there is
a map i : X ′ → X which sends each vertex in X ′ to the corresponding point in X ,
and each edge (v, w) to the corresponding geodesic segment. By construction, this
map is Γ-equivariant.

We now show that i is a quasi-isometric embedding, and in particular

10δdX′(v, w) 6 dX(v, w) 6 100δdX′(v, w).

For the right-hand inequality, observe that if two vertices v and w are connected
by a path of edge length dX′(v, w), then as the image of each edge in X has length
at most 100δ, this shows that dX(v, w) 6 100δdX′(v, w).
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For the left-hand inequality, let v and w be any two vertices in X ′. Then there
are two geodesics [ax, bx] and [cx, dx], connecting orbit points of x, such that v ∈
[ax, bx] and w ∈ [cx, dx]. By thin triangles, any geodesic [v, w] in X is contained
in a 2δ-neighbourhood of the union of the geodesics [ax, bx], [cx, dx], [ax, cx] and
[bx, dx]. In particular, each point p ∈ [v, w] lies within distance 12δ of a point
p′ ∈ Y . Let {pi} be a maximal collection of points on [v, w] all at least 10δ apart,
with an order inherited from an orientation on [v, w]. Let {p′i} be a corresponding
collection of vertices p′i in Y , with dX(pi, p

′
i) 6 12δ for all i. Each adjacent pair of

points p′i and p
′
i+1 is distance at most 44δ apart, and so is connected by an edge in

X ′. The collection pi contains at most dX(v, w)/10δ points, and so the distance in
X ′ between v and w is at most dX(v, w)/10δ.

Finally, we observe that X ′ is Gromov hyperbolic, as dX′ is quasi-isometric to
the restriction of the Gromov hyperbolic metric dX on the image of the vertices
of X ′ in X . A quasi-isometric embedding then induces an inclusion map on the
Gromov boundaries. �

By the theorem in the separable case, given x′ ∈ X ′ almost every sample path
(wnx

′) converges to a point ξ′ ∈ ∂X ′, hence if x = i(x′) then almost every sample
path (wnx) converges to i(ξ

′) ∈ ∂X , hence the random walk on X converges almost
surely to the boundary.

Another ingredient in the proof of the previous theorem is the following lemma
about the measure of shadows [MT16, Proposition 5.4], which we will use in the
later sections.

Proposition 2.7. Let G be a non-elementary, countable group acting by isometries
on a Gromov hyperbolic space X, and let µ be a non-elementary probability distri-
bution on G. Then there is a number R0 such that if g, h ∈ G are group elements
such that h and h−1g lie in the semigroup generated by the support of µ, then

ν(Shx(gx,R0)) > 0,

where A denotes the closure in X ∪ ∂X.

We will also use the well-known fact that in a Gromov hyperbolic space the
complement of a shadow is approximately a shadow, as in the following proposition.
We omit the proof, but we draw the appropriate approximate tree in Figure 1 below.

Proposition 2.8. Given non-negative constants δ,K and L, there are constants
C and D, such that in any δ-hyperbolic space X we have:

(1) for any pair of points x, y in X and any R > 0 we have

X \ Sx(y,R) ⊆ Sy(x, d(x, y) −R+ C)

(2) for any R > 0, and any bi-infinite (K,L)-quasigeodesic γ, parameterized
such that γ(0) is the closest point on γ to the basepoint x, then for any
shadow set V = Sx(γ(t), R) which does not contain x, with t > 0, and for
any point y ∈ U = Sx(γ(t+D), R), we have the inclusion

X \ V ⊆ Sy(x, d(x, γ(t)) −R+ C).
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x

yz

γ(0) γ(t)

V U

Figure 1. The complement of a shadow is contained in a shadow.

We will also use the following exponential decay estimates. For Y ⊂ X let
H+(Y ) denote the probability that the random walk ever hits Y , i.e. that there is
at least one index n ∈ N such that wnx ∈ Y .

Lemma 2.9 (Exponential decay of shadows, [Mah12, Lemma 2.10]). Let G be
a group which acts by isometries on a Gromov hyperbolic space X, and let µ be
a countable, non-elementary, bounded probability measure on G. Then there ex-
ist constants B > 0 and c < 1 such that for any shadow Sx(y,R) with distance
parameter r = d(x, y) −R, we have the estimates

ν(Sx(y,R)) 6 Bcr, (3)

and
H+(Sx(y,R)) 6 Bcr. (4)

In particular, for all n:
P(wnx ∈ Sx(y,R)) 6 Bcr. (5)

Indeed, equation (3) is [Mah10b, Lemma 5.4], and equation (4) follows from (3) as
in [MT16, Equation (5.3)]. Equation (5) is an immediate consequence of (4).

Finally, we will also use the following positive drift, or linear progress, result.

Proposition 2.10 (Exponential decay of linear progress, [Mah12]). Let µ be a
countable, non-elementary measure on G which has bounded support in X. Then
there exist constants B > 0, L > 0 and 0 < c < 1 such that for all n:

P(d(x,wnx) 6 Ln) 6 Bcn.

2.3. The Poisson boundary. Given a countable group G and a probability mea-
sure µ on G, one defines the space of bounded µ-harmonic functions as

H∞(G,µ) :=

{

f : G→ R bounded : f(g) =
∑

h∈G
f(gh)µ(h) ∀g ∈ G

}

.

Suppose now that G acts by homeomorphisms on a measure space (M, ν). Then
the measure ν is µ-stationary if

ν =
∑

h∈G
µ(h) h⋆ν.
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A G-space M with a µ-stationary measure ν is called a µ-boundary if for almost
every sample path (wn) the measure wnν converges to a δ-measure. Given a µ-
boundary, one has the Poisson transform Φ : L∞(M, ν) → H∞(G,µ) defined as

Φ(f)(g) :=

∫

M

f(gx) dν(x).

Definition 2.11. The space (M, ν) is the Furstenberg-Poisson boundary of (G,µ)
if the Poisson transform Φ is a bijection between L∞(M, ν) and H∞(G,µ).

It turns out that the Furstenberg-Poisson boundary is well-defined up to G-
equivariant measurable isomorphisms. Moreover, it is the maximal µ-boundary in
following sense: if (BFP , νFP ) is the Furstenberg-Poisson boundary and (B, ν) is an-
other µ-boundary, then there exists a G-equivariant measurable map (BFP , νFP ) →
(B, ν). Finally, such a boundary can be defined as the measurable quotient of the
sample space of the random walk (G,µ) by identifying two sample paths if they
eventually coincide (to be precise, one should cast this definition in the context of
measurable partitions, as defined by Rokhlin [Roh52]).

2.4. The strip criterion. In order to obtain the Poisson boundary for WPD ac-
tions, we will use Kaimanovich’s strip criterion. This basically says that if bi-infinite
paths for the random walks can be approximated by subsets of G, called strips, then
one can conclude that the relative entropies of the conditional random walks vanish,
hence the proposed geometric boundary is indeed the Poisson boundary.

Given a measure µ on G, its reflected measure if µ̌(g) := µ(g−1). Moreover, we
denote as ν̌ the hitting measure for the random walk associated to the reflected
measure µ̌. We say that the measure µ has finite entropy if

H(µ) := −
∑

g∈G
µ(g) logµ(g) <∞.

Finally, it has finite logarithmic moment if
∫

G
log+ d(x, gx) dµ(g) < ∞. Let us

denote as

BG(g) := {h ∈ G : d(x, hx) 6 d(x, gx)}.
We shall use the following strip criterion by Kaimanovich.

Theorem 2.12 ([Kai00]). Let µ be a probability measure with finite entropy on G,
and let (∂X, ν) and (∂X, ν̌) be µ- and µ̌-boundaries, respectively. If there exists a
measurable G-equivariant map S assigning to almost every pair of points (α, β) ∈
∂X × ∂X a non-empty “strip” S(α, β) ⊂ G, such that for all g

1

n
log |S(α, β)g ∩BG(wn)| → 0 as n→ ∞,

for ν× ν̌-almost every (α, β) ∈ ∂X×∂X, then (∂X, ν) and (∂X, ν̌) are the Poisson
boundaries of the random walks (G,µ) and (G, µ̌), respectively.

3. Background on the Cremona group

We will start by recalling some fundamental facts about the Cremona group,
and especially its action on the Picard-Manin space. For more details, see [CL13],
[DF01], [Fav08] and references therein.
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3.1. The Picard-Manin space. If X is a smooth, projective, rational surface the
group

N1(X) := H2(X,Z) ∩H1,1(X,R)

is called the Néron-Severi group. Its elements are Cartier divisors on X modulo
numerical equivalence. The intersection form defines an integral quadratic form on
N1(X). We denote N1(X)R := N1(X)⊗ R.

If f : X → Y is a birational morphism, then the pullback map f⋆ : N1(Y ) →
N1(X) is injective and preserves the intersection form, so N1(Y )R can be thought
of as a subspace of N1(X)R.

A model for P2(C) is a smooth projective surface X with a birational morphism
X → P2(C). We say that a model π′ : X ′ → P2(C) dominates the model π :
X → P2(C) if the induced birational map π−1 ◦ π′ : X ′ 99K X is a morphism. By
considering the set BX of all models which dominate X , one defines the space of
finite Picard-Manin classes as the injective limit

Z(X) := lim
X′∈BX

N1(X ′)R.

In order to find a basis for Z(X), one defines an equivalence relation on the set of
pairs (p, Y ) where Y is a model of X and p a point in Y , as follows. One declares
(p, Y ) ∼ (p′, Y ′) if the induced birational map Y 99K Y ′ maps p to p′ and is an
isomorphism in a neighbourhood of p. We denote the quotient space as VX . Finally,
the Picard-Manin space of X is the L2-completion

Z(X) :=







[D] +
∑

p∈VX

ap[Ep] : [D] ∈ N1(X)R, ap ∈ R,
∑

p∈VX

a2p < +∞







.

In this paper, we will only focus on the case X = P2(C). Then the Néron-Severi
group of P2(C) is generated by the class [H ] of a line, with self-intersection +1.
Thus, the Picard-Manin space is

Z(P2) :=







a0[H ] +
∑

p∈V
P2(C)

ap[Ep],
∑

p

a2p < +∞







.

It is well-known that if one blows up a point in the plane, then the corresponding
exceptional divisor has self-intersection −1, and intersection zero with divisors on
the original surface.

Thus, the classes [Ep] have self-intersection −1, are mutually orthogonal, and

are orthogonal to N1(X). Hence, the space Z(P2) is naturally equipped with a
quadratic form of signature (1,∞), thus making it a Minkowski space of uncount-
ably infinite dimension. Thus, just as classical hyperbolic space can be realized as
one sheet of a hyperboloid inside a Minkowski space, inside the Picard-Manin space
one defines

HP2 := {[D] ∈ Z(P2) : [D]2 = 1, [H ] · [D] > 0}
which is one sheet of a two-sheeted hyperboloid. The restriction of the quadratic
intersection form to HP2 defines a Riemannian metric of constant curvature −1,
thus making HP2 into an infinite-dimensional hyperbolic space. More precisely, the
induced distance dist satisfies the formula

coshdist([D1], [D2]) = [D1] · [D2].
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Each birational map f acts on Z by orthogonal transformations. To define the
action, recall that for any rational map f : P2(C) 99K P2(C) there exist a surface
X and morphisms π, σ : X → P2(C) such that f = σ ◦ π−1. Then we define
f⋆ = (π⋆)−1 ◦ σ⋆, and f⋆ = (f−1)⋆. Moreover, f⋆ preserves the intersection form,
hence it acts as an isometry of HP2 : in other words, the map f 7→ f⋆ is a group
homomorphism

Bir P2(C) → Isom(HP2)

hence one can apply to the Cremona group the theory of random walks on groups
acting on non-proper δ-hyperbolic spaces.

The space HP2 is not separable; however, any countable subgroup of the Cremona
group preserves a closed, totally geodesic, separable, subset of HP2 (see also [DP12],
Remark 1).

Definition 3.1. The dynamical degree of a birational transformation f : X 99K X
is defined as

λ(f) := lim
n→∞

‖(fn)⋆‖1/n

where ‖ · ‖ is any operator norm on the space of endomorphisms of H⋆(X,R).

Note that λ(f) = λ(gfg−1) is invariant by conjugacy. Moreover, if f is rep-
resented by three homogeneous polynomials of degree d without common factors,
then the action of f⋆ on the class [H ] of a line is f⋆([H ]) = d[H ], hence

λ(f) = lim
n→∞

deg(fn)1/n.

Moreover, the degree is related to the displacement in the hyperbolic space HP2 : in
fact, (see [Fav08], page 17)

deg(f) = f⋆[H ] · [H ] = [H ] · f⋆[H ] = coshd(x, fx)

if x = [H ] ∈ HP2 . As a consequence, the dynamical degree λ(f) of a transformation
f is related to its translation length τ(f) by the equation ([CL13], Remark 4.5):

τ(f) = lim
n→∞

dist(x, fnx)

n
= lim

n→∞
cosh−1 deg(fn)

n
= logλ(f).

Hence, a Cremona transformation f is loxodromic if and only if λ(f) > 1.

4. Growth of translation length

Let us now start by proving that for bounded probability measures translation
length grows linearly along almost every sample path.

Theorem 4.1. Let G be a group acting on a Gromov hyperbolic space X. Let µ be
a countable non-elementary measure on G whose support is bounded in X. Then
for almost every sample path we have

lim
n→∞

τ(wn)

n
= L

where L > 0 is the drift of the random walk.

This will follow using the following result, that the size of the Gromov products
(wnx · w−1

n x)x grows sublinearly.
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Proposition 4.2. Let G be a group acting on a Gromov hyperbolic space X. Let µ
be a countable non-elementary measure on G whose support is bounded in X. Then
for almost every sample path we have

lim
n→∞

(wnx · w−1
n x)x

n
= 0.

We now prove Theorem 4.1, assuming Proposition 4.2.

Proof of Theorem 4.1. Since the support is bounded in X , by Theorem 2.5 there
exists L > 0 such that almost surely

lim
n→∞

d(x,wnx)

n
= L.

Moreover, by Proposition 4.2

lim
n→∞

(wnx · w−1
n x)x

n
= 0.

The claim then follows by using the well-known formula (see [MT16], Appendix A)

τ(g) = d(x, gx) − 2(gx · g−1x)x +O(δ).

�

Finally, we prove Proposition 4.2.

Proof of Proposition 4.2. In fact, we will show the following exponential decay
statement: there exist B > 0 and 0 < c < 1 such that for any ǫ > 0 we have

P((wnx · w−1
n x)x > ǫn) 6 Bcǫn. (6)

The statement of the Proposition then follows by Borel-Cantelli. The proof of (6)
will be achieved in the following steps. First of all, for the sake of simplicity let
us replace n by 2n. Moreover, let us define the random variable un := w−1

n w2n, so
that w2n = wnun. Note that by the Markov property wn and un are independent,
and the distribution of u−1

n equals the distribution of the nth step of the reflected
random walk.

(1) For any n > 0 and any ǫ > 0 we have

P((wnx · u−1
n x)x > ǫn) 6 Bcǫn

for some constants B > 0, c < 1.

Proof. By definition, the condition (wnx · u−1
n x)x > ǫn is equivalent to

wnx ∈ Sx(u
−1
n x, d(x, u−1

n x) − ǫn). Hence

P((wnx · u−1
n x)x > ǫn) =

∑

g

P
(

wnx ∈ Sx(u
−1
n x, d(x, u−1

n x)− ǫn) | un = g
)

P(un = g)

and by independence

P((wnx · u−1
n x)x > ǫ) =

∑

g

P(wnx ∈ Sx(g
−1x, d(x, g−1x)− ǫn))P(un = g)

hence by exponential decay of shadows, Lemma 2.9,

P((wnx · u−1
n x)x > ǫ) 6 Bcǫn,

as required. �
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(2) For any n > 0 we have

P((w2nx · wnx)x 6 (L− ǫ)n) 6 Bcǫn.

Proof. By definition of the Gromov product, if

(w2nx · wnx)x 6 (L− ǫ)n

then

w2nx /∈ Sx(wnx, d(x,wnx)− (L − ǫ)n).

Since w2n = wnun and wn acts by isometries, this implies that

unx /∈ Sw−1
n x(x, d(x,wnx)− (L− ǫ)n).

As the complement of a shadow is contained in a shadow (Proposition 2.8),

unx ∈ Sx(w
−1
n x, (L − ǫ)n+ C), (7)

where C depends only on δ. Now, if d(x,wnx) > Ln the distance parameter
of the above shadow is r = d(x,w−1

n x) − (L− ǫ)n− C > ǫn− C, hence by
decay of shadows (Lemma 2.9) and decay of linear progress (Lemma 2.10),
the probability that (7) holds is at most Bcǫn−C . Hence the claim holds
after replacing B with a slightly larger B. �

(3) For any n > 0 we have

P((w−1
2n x · u−1

n x)x 6 (L− ǫ)n) 6 Bcǫn.

The proof is exactly as the previous one so we will not write it in detail.
(4) Finally, we will use the following lemma in hyperbolic geometry (for a proof,

see [TT16]):

Lemma 4.3. Let X be a δ-hyperbolic space, x ∈ X a base point, and fix
A > 0. Then for any four points a, b, c, d ∈ X which satisfy (a · b)x > A,
(c · d)x > A, and (a · c)x 6 A− 3δ, one has (b · d)x 6 (a · c)x− 2δ 6 A− 5δ.

By applying this lemma to A = ǫn, a = wnx, b = w2nx, c = u−1
n x, and

d = w−1
2n x we complete the proof of equation (6).

�

5. WPD actions

5.1. The WPD condition. Let G be a group acting by isometries on a metric
space X . Recall that the action of G on X is proper if the map G ×X → X ×X
given by (g, x) 7→ (x, gx) is proper, i.e. the preimages of compact sets are compact.
A related notion is that the action is properly discontinuous if for every x ∈ X
there exists an open neighbourhood U of x such that gU ∩U 6= ∅ holds for at most
finitely many elements g. If the space X is not proper, it is very restrictive to ask
for the action to be proper (for instance, point stabilizers for a proper action must
be finite). However, Bestvina-Fujiwara [BF02] defined the notion of weak proper
discontinuity, or WPD ; essentially, a loxodromic isometry g is a WPD element if
its action is proper in the direction of its axis.
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Definition 5.1. Let G be a group acting on a hyperbolic space X , and h a lox-
odromic element of G. One says that h satisfies the weak proper discontinuity
condition (or h is a WPD element) if for every K > 0 and every x ∈ X , there exists
M ∈ N such that

#|{g ∈ G : d(x, gx) < K, d(hMx, ghMx) < K}| <∞.

If we define the joint coarse stabilizer of two points x, y ∈ X as

StabK(x, y) := {g ∈ G : d(x, gx) 6 K and d(y, gy) 6 K}

then the WPD condition says that for any K and any x there exists an integer M
such that StabK(x, hMx) is a finite set. A trivial consequence of the definition of
WPD is the following.

Lemma 5.2. Let G be a group acting on a Gromov hyperbolic space X, and let h be
a WPD element in G. Then there are functionsMW : R>0 → N and NW : R>0 → N

such that for any x ∈ X, any K > 0, and for any f ∈ G one has

#|StabK(fx, fhMW (K)x)| 6 NW (K).

Proof. By definition, note that

StabK(fx, fy) = fStabK(x, y)f−1

hence the cardinality

#|StabK(fx, fhMx)| = #|f(StabK(x, hMx))f−1| = #|StabK(x, hMx)|

is finite and independent of f , proving the claim. �

6. The Poisson boundary

Let us now use the WPD property to prove that the Poisson boundary coincides
with the Gromov boundary, proving Theorem 1.6 in the Introduction. The idea
is to define appropriately the strips for Kaimanovich’s criterion using “elements
of bounded geometry” as below, and using the WPD condition to show that the
number of elements in such strips grows at most linearly.

Choose K large enough, let us fix a base point x ∈ X , and take v = hM to be a
sufficiently high power of h so that the WPD condition holds with constant 22K.

6.1. Elements of bounded geometry. For any pair (α, β) ∈ ∂X × ∂X , with
α 6= β, define the set of bounded geometry elements as

O(α, β) := {g ∈ G : α ∈ Sgvx(gx,K) and β ∈ Sgx(gvx,K)}.

An example of a bounded geometry element is illustrated below in Figure 2. Note
that for any g ∈ G we have O(gα, gβ) = gO(α, β). Moreover, we define the ball in
the group with respect to the metric on X as

B(y, r) := {g ∈ G : d(y, gx) 6 r}

where y ∈ X and r > 0.
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β

α

Sgx(gvx,K)

Sgvx(gx,K)

gx

gvxX

∂X

Figure 2. A bounded geometry element g in O(α, β).

The most crucial property of bounded geometry elements is that their number
in a ball grows linearly with the radius of the ball.

Proposition 6.1. There exists a constant C such that for any radius r > 0 and
any pair of distinct boundary points α, β ∈ ∂X one has

#|B(x, r) ∩ O(α, β)| 6 Cr.

This fact follows from the next lemma, which uses the WPD property in a crucial
way.

Lemma 6.2. For any K > 0 there exists a constant N such that

#|B(z, 4K) ∩ O(α, β)| 6 N

for any z ∈ X and any pair of distinct boundary points α, β.

Proof. Let us consider two elements g, h which belong to O(α, β)∩B(z, 4K). Then
if we let f = hg−1, then

d(gx, fgx) 6 8K. (8)

Let γ be a quasigeodesic which joins α and β, and denote S1 := Sgvx(gx,K),

S2 := Sgx(gvx,K). By construction, α belongs to both S1 and fS1 hence both
α and fα belong to fS1; similarly, β and fβ belong to fS2. Hence, the two
quasigeodesics γ and fγ have endpoints in fS1 and fS2, hence they must fellow
travel in their middle: more precisely, they must pass within distance 2K from
both fgx and y := fgvx. Hence, if we call q a closest point to fγ to fgx, we have
d(fgx, q) 6 2K. Moreover, if we call p a closest point on γ to y, and p′ a closest
point on fγ to y, we have

d(p, p′) 6 d(p, y) + d(y, p′) 6 4K

Combining this with eq. (8) we get

|d(gx, p)− d(fgx, p′)| 6 12K

Moreover, since f is an isometry we have d(fgx, fp) = d(gx, p), hence

|d(fgx, fp)− d(fgx, p′)| 6 12K (9)

Now, the points q, p′ and fp both lie on the quasigeodesic fγ; let us assume that
fp lies in between q and p′, and draw a geodesic segment γ′ between q and p′, and
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let p′′ be a closest point projection of fp to γ′ (the case where p′ lies between q and
fp is completely analogous). By fellow traveling, we have d(fp, p′′) 6 L. Then,
since p′, p′′ and q lie on a geodesic, we have

d(p′, p′′) = |d(q, p′)− d(q, p′′)| 6
and by using eq. (9)

6 |d(fgx, p′)−d(fgx, fp)|+d(fgx, q)+d(fgx, q)+d(fp, p′′) 6 12K+2K+2K+L

hence

d(fp, p′) 6 16K + 2L

and finally

d(y, fy) 6 d(y, p′) + d(p′, fp) + d(fp, fy) 6 20K + 2L

Thus, if we choose K large enough so that L 6 K we have d(gvx, fgvx) =
d(fgvx, f2gvx) 6 22K hence

f ∈ Stab22K(gx, gvx)

so by Lemma 5.2 there are only N possible choices of f , as claimed. �

Proof of Proposition 6.1. Let γ be a quasi-geodesic in X which joins α and β. By
definition, if g belongs to O(α, β), then gx lies within distance 6 2K of γ. Then
one can pick points (zn)n∈Z) along γ such that any point of γ is within distance
6 2K of some zn. Then, any ball of radius r contains at most cr of such zn, where
c depends only on K and the quasigeodesic constant of γ. The claim then follows
from Lemma 6.2. �

We now turn to the proof of Theorem 1.6. By Theorem 2.5, we know that
since both µ and its reflected measure µ̌ are non-elementary, both the forward
random walk and the backward random walk converge almost surely to points on
the boundary of X . Thus, one defines the two boundary maps ∂± : (GZ, µZ) → ∂X
as follows. Let ω = (gn)n∈Z be a bi-infinite sequence of increments, and define

∂+(ω) := lim
n→∞

g1 . . . gnx, ∂−(ω) := lim
n→∞

g−1
0 g−1

−1 . . . g
−1
−nx

the two endpoints of, respectively, the forward random walk and the backward
random walk. Then define

O(ω) := O(∂+(ω), ∂−(ω))

the set of bounded geometry elements along the “geodesic” which joins ∂+(ω) and
∂−(ω). Note that, if T : GZ → GZ is the shift in the space of increments, we have

O(T nω) = O(w−1
n ∂+, w

−1
n ∂−) = w−1

n O(ω).

Now we will show that for almost every bi-infinite sample path ω the set O(ω)
is non-empty and has at most linear growth. In fact, by definition of bounded
geometry

P(1 ∈ O(ω)) = p = ν(S)ν̌(S′) > 0

where S = Svx(x,K) and S′ = Sx(vx,K), and their measures are positive by
Proposition 2.7. Moreover, since the shift map T preserves the measure in the
space of increments, we also have for any n

P(wn ∈ O(ω)) = P(1 ∈ O(T nω)) = p > 0.
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Thus, by the ergodic theorem, the number of times wn belongs to O(ω) grows
almost surely linearly with n: namely, for a.e. ω

lim
n→∞

#|{1 6 i 6 n : wi ∈ O(ω)}|
n

= p > 0.

Hence the set O(ω) is almost surely non-empty (in fact, it contains infinitely many
elements). On the other hand, by Proposition 6.1 the set O(ω) has at most linear
growth, i.e. there exists C > 0 such that

#|O(ω) ∩BG(z, r)| 6 Cr ∀r > 0. (10)

The Poisson boundary result now follows from the strip criterion (Theorem 2.12).
Let P (G) denote the set of subsets of G. Then, we define the strip map S :
∂X × ∂X → P (G) as S(α, β) := O(α, β); hence, by equation (10)

#|S(α, β)g ∩BG(wn)| 6 Cd(wnx, x).

Then, since µ has finite logarithmic moment, one has almost surely

lim
n→∞

1

n
log d(wnx, x) → 0

which verifies the criterion of Theorem 2.12, establishing that the Gromov boundary
of X is a model for the Poisson boundary of the random walk.

7. Asymptotic acylindricality

We say that a group G acting by isometries on a Gromov hyperbolic space is
acylindrical if for all K > 0, there are constants R > 0 and N > 0, such that for
all points x and y in X , with d(x, y) > R, one has the bound

#|StabK(x) ∩ StabK(y)| 6 N.

Let µ be a probability measure on a group G acting by isometries on a Gromov
hyperbolic space.

Definition 7.1. We say that the random walk generated by µ is asymptotically
acylindrical if there is a function Nac : R>0 → R>0 such that for all K > 0, the
probability that

#|StabK(x) ∩ StabK(wnx)| 6 Nac(K)

tends to one as n tends to infinity.

In the following, we will actually need an explicit rate of convergence to one in
the previous definition. Recall that we say that the random walk generated by µ
is asymptotically acylindrical with square root exponential decay if for any K > 0
there exist constants N > 0, B > 0, c < 1 such that

P(#|StabK(x) ∩ StabK(wnx)| 6 N) > 1−Bc
√
n.

We now show that if Γµ contains a WPD element, then the random walk de-
termined by µ is asymptotically acylindrical with square root exponential decay,
which is Theorem 1.2 in the Introduction.

Theorem 7.2. Let G be a group acting by isometries on a Gromov hyperbolic space
X, let x ∈ X, and let µ be countable, non-elementary, bounded, WPD probability
distribution on G. Then for any K > 0, there are constants N > 0, B > 0 and
c < 1 such that

P (#|StabK(x,wnx)| 6 N) > 1−Bc
√
n
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and

P (#|StabK(p, wnp)| 6 N) > 1−Bc
√
n

where p is a closest point projection of x onto an axis αwn
of wn.

Let (Y, ν) be a probability space, and let T : Y → Y be a measure-preserving,
ergodic map. Then for any set A of positive measure ν(A) > 0, the ν-measure of
the union of the iterates A ∪ T−1A ∪ · · ·T−nA tends to one as n tends to infinity.
The proof of the Theorem 7.2 depends crucially on the following effective estimate
for the rate at which this measure tends to one, Proposition 7.3. Such a result
does not hold in general for arbitrary measurable sets, but we show it holds in our
context in which Y = ∂X × ∂X , and A contains an open set in Y containing limit
points of Γµ × Γµ̌.

We shall write (G,µ)Z for the step space, and gn for projection onto the n-th
factor. We shall write wn for the location of the random walk at time n, i.e. w0 = 1
and wn+1 = wngn+1. Let T be the shift map on (G,µ)Z, i.e. gn(T (ω)) = gn+1(ω),
and let ∂ : (G,µ)Z → X ×X be the boundary map ∂ = ∂+ × ∂−. We shall write
Λµ := Γµx ∩ ∂X for the limit set of Γµ in the Gromov boundary ∂X , which does
not depend on the choice of x ∈ X .

The shift map T : (G,µ)Z → (G,µ)Z is ergodic, and so if a set A ⊂ GZ has
positive measure, then the measure of the union of images A ∪ T−1A ∪ · · ·T−nA
tends to one as n tends to infinity. We now obtain a rate of convergence, for sets
A whose images under the boundary map contain an open neighbourhood of a pair
of distinct points in the forward and backward limit sets of the random walk.

Proposition 7.3. Let G be a group acting by isometries on a Gromov hyperbolic
space X, and let µ be a countable, non-elementary, bounded probability distribution
on G. Let V+ and V− be a pair of sets in X ∪ ∂X, such that there are a pair
of distinct points λ+ ∈ Λµ and λ− ∈ Λµ̌, for which V+ × V− contains an open
neighbourhood of (λ+, λ−) in ∂X × ∂X. Set A = {ω ∈ (G,µ)Z : ∂(ω) ∈ V+ × V−}.
Then there are constants B > 0 and c < 1 such that

µZ(A ∪ T−1A ∪ · · · ∪ T−nA) > 1−Bc
√
n.

Proof. Let γ be a (1,K1)-quasigeodesic from λ− to λ+, and choose a unit speed
parameterization of γ such that γ(0) is a closest point on γ to the basepoint x, and
furthermore limt→∞ γ(t) = λ+.

Without loss of generality, we may replace V+ and V− by smaller sets, which
are disjoint, and which are disjoint from the basepoint x, and such that V+ × V−
still contains an open neighbourhood of (λ+, λ−) in ∂X × ∂X . Furthermore, as
shadow sets form a neighbourhood basis for the topology on ∂X , we may assume
that V+ and V− are shadow sets V+ = Sx(γ(t), R0) and V− = Sx(γ(−t), R0),
for some t sufficiently large, where R0 is the constant from Proposition 2.7. Let
D be the constant from Proposition 2.8, and let U+ = Sx(γ(t + D), R0), and
U− = Sx(γ(−t−D), R0). This is illustrated below in Figure 3.
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x

λ−g

λ+g

U+

V+

U−

V−

Figure 3. Nested shadows.

Let A = ∂−1(V+ × V−). It suffices to show that

µZ(A ∪ T−1A ∪ · · · ∪ T−nA) → 1,

or equivalently,

µZ(GZ \ (A ∪ T−1A ∪ · · · ∪ T−nA)) → 0,

at the appropriate rate. If we write Ac := GZ \A, we may rewrite this as

µZ(Ac ∩ T−1Ac ∩ · · · ∩ T−nAc) → 0.

For notational convenience, we will write An for Ac ∩ T−1Ac ∩ · · · ∩ T−nAc.
It will be convenient to approximate A by sets of the following form. Let Uk be

the set of sample paths for which wkx ∈ U+ and w−kx ∈ U−, i.e.

Uk = {ω ∈ GZ : (wk(ω)x,w−k(ω)x) ∈ U+ × U−},
and let Vk be the subset of Uk consisting of those sample paths for which wn(ω) ∈ V+
for all n > k, and w−n(ω) ∈ V− for all n > k, i.e.

Vk =

{

ω ∈ GZ (wn(ω)x,w−n(ω)x) ∈ U+ × U− for n = k,
(wn(ω)x,w−n(ω)x) ∈ V+ × V− for n > k

}

.

In particular, ∂(Vk) ⊆ V+ × V−, and so Vk ⊆ A. Therefore Ac ⊆ V ck , which
immediately implies

An ⊆ V ck ∩ T−1V ck ∩ · · · ∩ T−nV ck =

n
⋂

i=0

T−iV ck .

As we are taking intersections, we may choose a subcollection of the sets on the
right. We shall choose numbers ℓ and k which grow at rate approximately

√
n. To

be precise, choose k and ℓ to be the largest integers such that 2k + 1 6
√
n and

ℓ 6
√
n. Then (2k + 1)ℓ 6 n, so

An ⊆
ℓ−1
⋂

i=0

T−(2k+1)iV ck .
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As Vk ⊆ Uk, this implies that V ck = U ck ∪ (Uk \ Vk), which gives

An ⊆
ℓ−1
⋂

i=0

T−(2k+1)i(U ck ∪ (Uk \ Vk)).

By distributing out unions and intersections, this implies the inclusion

An ⊆
(

ℓ−1
⋂

i=0

T−(2k+1)iU ck

)

∪
(

ℓ−1
⋃

i=0

T−(2k+1)i(Uk \ Vk)
)

.

The set U ck only depends on g−k, g−k+1, . . . gk, so the events T−(2k+1)iU ck are inde-
pendent. Therefore

µZ(An) 6 µZ(U ck)
ℓ + ℓµZ(V ck \ U ck).

By the definition of Uk, µ
Z(Uk) = µk(U+)µ̌k(U−). The convolution measures

weakly converge to the hitting measures ([MT16], end of Section 4), hence by the
portmanteau theorem lim infk µk(U+) > ν(U+) and lim infk µ̌k(U−) > ν̌(U−). By
[MT16, Proposition 5.4], ν(U+) > 0 and ν̌(U−) > 0, so there is a c1 < 1 such that
µZ(U ck) < c1 < 1 for all k sufficiently large.

We now find an upper bound for µZ(Uk \ Vk). Positive drift with exponential
decay [MT16, Theorem 1.2] implies that there are constants L > 0, B2 > 0 and
c2 < 1 such that

P(d(x,wkx) 6 Lk) 6 B2c
k
2 ,

and similarly, for the reflected measure

P(d(x,w−kx) 6 Lk) 6 B2c
k
2 .

Therefore, we may assume that both d(x,wkx) > Lk and d(x,w−kx) > Lk, for
all but a set of sample paths in Uk of µZ-measure at most 2B2c

k
2 . Then, by our

choice of shadow sets, we may apply Proposition 2.8, which implies that X \ V+ ⊆
Swkx(x,R0+C) and X \V− ⊆ Sw−kx(x,R0+C), where C depends only on x, γ(±t)
and δ, as the quasigeodesic constants for a quasi-axis depend only on δ. By Lemma
2.9, the probability of ever hitting a shadow decays exponentially in the distance
from the shadow, so there are constants B3 > 0 and c3 < 1 such that the probability
that wkx lies in U+ and wkx lies in X \V+ for some n > k is at most B3c

Lk−R0−C
3 ,

and similarly, the probability that w−kx lies in U− and w−nx lies in X \ V− for

some n > k is at most B3c
Lk−R0−C
3 . Therefore, there are constants B4 > 0 and

c4 < 1 such that
µZ(Uk \ Vk) 6 B4c

k
4 .

Therefore
µZ(An) 6 cℓ1 + ℓB4c

k
4 ,

and as we have chosen 2k + 1 6
√
n and ℓ 6

√
n, there are constants B5 and c5

such that
µZ(Ac ∩ T−1Ac ∩ · · · ∩ T−nAc) 6 B5c

√
n

5 ,

as required. �

We will use the following definition from [CM15].

Definition 7.4. Let G be a group acting on a Gromov hyperbolic space X . We
say that two geodesics γ and γ′ in X have an (L,K)−match if there exist geodesic
subsegments α ⊆ γ and α′ ⊆ γ′ of length > L and some g ∈ G such that gα and
α′ have Hausdorff distance 6 K.
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If g is a loxodromic element, we denote by λ+g and λ−g , respectively, the attracting
and repelling fixed points of g on ∂X . We shall write γn for a geodesic in X from x
to wnx, and if g is a loxodromic isometry of X , we shall write αg for an axis for g.

We will use the following result due to Dahmani and Horbez [DH15, Proposition
1.5]: they do not explicitly state the rate, but it follows immediately from the proof.

Proposition 7.5. Let G be a group which acts on a δ-hyperbolic space X, and
let K > 0. Let µ be a countable, non-elementary, bounded probability distribution
on G, and let ℓ > 0 be the drift of the random walk generated by µ. If wn is
loxodromic, let p denote a closest point projection of x to the axis of wn. Then
there exist constants B > 0, c < 1 such that for any ǫ > 0 we have

P (γn has a ((ℓ− ǫ)n,K)-match with [p, wnp]) > 1−Bcǫn.

We now show that for any loxodromic element g in Γµ, the probability that
[x,wnx] has an (L,K)-match with a translate of the axis αg of g tends to one as n
tends to infinity, and give an explicit bound on the rate of convergence.

Proposition 7.6. Given δ > 0 there is a constant K0 with the following properties.
Let G be a group acting by isometries on a Gromov hyperbolic space, and let µ be
a countable, non-elementary, bounded probability distribution on G.

(1) Let g be a loxodromic element in Γµ, and let αg be an axis for g. Given
constants K > K0 and L, there are constants B1 > 0 and c1 < 1 such that
the probability that γn = [x,wnx] has an (L,K)-match with a G-translate

of αg is at least 1−B1c
√
n

1 .
(2) Furthermore, if wn is loxodromic, then let αwn

be an axis for wn, and p be
a closest point on αwn

to the basepoint x. Then for any K > K0 and any
L > 0, there are constants B2 > 0 and c2 < 1 such that the probability that
wn is loxodromic and [p, wnp] has an (L,K)-match with a G-translate of

αg is at least 1−B2c
√
n

2 .

Proof. Let δ be a constant of hyperbolicity for X , and let K1 be the quasigeodesic
constant from Proposition 2.1. Given these values of δ and K1, let K0 be the
fellow-travelling constant L from Proposition 2.4, and let D be the constant from
Proposition 2.4.

There are constants B1 and c1 < 1 such that the probability that wn is loxo-
dromic is at least 1 − B1c

n
1 . Furthermore, the translation length grows linearly in

n, and so there are constants L2 > 0, B2 and c2 < 1 such that the probability that
τ(wn) > L2n is at least 1−B2c

n
2 .

Let g be a loxodromic element in Γµ, and let us fix K > K0. As shadow sets form
a neighbourhood basis for the topology on ∂X , given two distinct points λ+g and

λ−g we may choose disjoint shadow sets V+ = Sx(y
+, R) and V− = Sx(y

−, R) such
that λ+g lies in the interior of V+ and λ−g lies in the interior of V−. Furthermore, we
may choose the shadow sets to be distance at least L + 2D apart. By Proposition
2.4, for any pair of points ξ1 ∈ V− and ξ2 ∈ V+, any geodesic segment [ξ1, ξ2] has
an (L,K)-match with the axis αg of g.

Let C be the largest distance from the basepoint x to any geodesic with endpoints
in V+ and V−, i.e. C := sup(ξ1,ξ2)∈A d(x, [ξ1, ξ2]) < +∞.

Set A = V+ × V−, then if (∂+(ω), ∂−(ω)) ∈ A then the bi-infinite geodesic
γ(ω) := [∂+(ω), ∂−(ω)] has an (L,K)-match with the axis αg of g. Furthermore,
this match is contained in a (C + L)-neighbourhood of the basepoint x.
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By definition of the shift map and the fact that the action is by isometries,
ω ∈ T−nA implies that γ(ω) matches the axis wnαg = αwngw

−1
n

in a (C + L)-
neighborhood of wnx. Then by Proposition 7.3, there are constants B1 and c1 < 1
such that the probability that γ(ω) has an (L,K)-match with a translate of the
axis of g, which contains the nearest point projection of wix for some 0 6 i 6 n is

at least 1−B1c
√
n

1 .
Finally, let us denote as pi the closest point projection of wix to the geodesic

γ(ω), and ℓ > 0 be the drift of the random walk. Then by exponential decay of
linear progress and of sublinear tracking ([MT16, Proposition 5.7]), given ǫ > 0
there are constants B2 and c2 < 1 such that

P(∃ i ∈ {0, . . . , n} : |d(p0, pi)− ℓi| > ǫi) 6 B2c
n
2 .

Therefore, with high probability pi lies between γ(ǫn) and γ((ℓ − ǫ)n), so by thin
triangles, the geodesic γn = [x,wnx] also matches a segment of length at least L of
a translate of the axis of g.

Now, let p denote the closest point projection of x onto the axis of wn. By
Proposition 7.5 with high probability the segment [x,wnx] matches a subsegment
of [p, wnp] of length at least (ℓ− ǫ)n. Then by the previous argument the segment
[p, wnp] matches a translate of the axis of g. �

We may now complete the proof of Theorem 7.2.

Proof of Theorem 7.2. Let δ be a constant of hyperbolicity for X , and let K1 be
the quasigeodesic constant from Proposition 2.1. Given these values of δ and K1,
let K0 be the fellow-traveling constant L from Proposition 2.4.

If K ′ > K then StabK(x, y) ⊆ StabK′(x, y), so without loss of generality, we
may assume that K > K0, where K0 is the constant from the previous paragraph.

Choose L > NW (K + 2δ), where NW is the WPD function for g from Lemma
5.2.

If wn is hyperbolic with axis αwn
, let p be a nearest point on αwn

to the basepoint
x. By Proposition 7.6, there are constants B and c < 1 such that the probability
that wn is hyperbolic and both [x,wnx] and [p, wnp] have (L,K)-matches with a

translate of αg is at least 1−Bc
√
n.

Thus, if h is an element which K-coarsely stabilizes both x and wnx, then by
hyperbolicity it also (K + 2δ)-coarsely stabilizes a subsegment of length L of the
axis of a conjugate of g. However, by definition of WPD there are only at most
NW (K + 2δ) elements h which do this, yielding the claim with N = NW (K + 2δ).
The exact same argument works for [p, wnp]. �

Lemma 7.7. Let G be a group acting on a Gromov hyperbolic space X. Let µ be
a countable, non-elementary, bounded, WPD probability distribution on G, and let
h be a WPD element in G which lies in Γµ. Then for any ǫ > 0, any K > K0, and
any L > 0 there are constants B > 0 and c < 1 such that the probability that every
segment [wix,wi+ǫnx] for 0 6 i 6 n(1 − ǫ) has a (L,K)-match with a translate of

the axis of h is at least 1−Bc
√
n.

Proof. By Proposition 7.6, for each i the probability that [wix,wi+ǫnx] does not

have a (L,K)-match with a translate of the axis of h is at most B1c
√
ǫn

1 for some
c1 < 1, and there are at most n(1−ǫ) possible values of i, hence the total probability
is 6 B1(1− ǫ)nc

√
ǫn

1 . The result then follows for suitable choices of B and c. �
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8. Non-matching estimates

So far, we have established generic properties of our random walks by proving
matching estimates, i.e. by showing that with high probability there is a subsegment
of the sample path that fellow travels some given element. However, in order to
establish our results on the normal closure, we need to prove that the probability
of such a matching to occur too often is not so high: we call this a non-matching
estimate. Note that, while matching happens for random walks on any group
of isometries of a hyperbolic space, to prove non-matching one uses crucially the
WPD property (and in fact, non-matching may not hold in the non-WPD case, for
example, for a dense subgroup of SL(2,R) acting on H

2).
We now define notation for the nearest point projection of a location wmx of the

random walk to a geodesic γn from x to wnx.

Definition 8.1. Given integers 0 6 m 6 n, let γn be a geodesic from x to wnx,
and let γn(tm) be a nearest point on γn to wmx.

The main non-matching estimate is the following proposition, which says that
the probability that γn contains in its neighbourhood a translate of a given geodesic
segment η starting at γn(tm) is bounded above by an exponential function of

√

|η|.
We will prove it by using the asymptotic acylindricality property established in the
previous section.

Proposition 8.2. Given a constant δ > 0 there is a constant K0 > 0 with the
following properties. Let G be a group which acts by isometries on the δ-hyperbolic
space X, and let µ be a countable, bounded probability distribution on G, such
that the random walk generated by µ is asymptotically acylindrical with square root
exponential decay.

Then for any constant K > K0 there are constants B > 0 and c < 1, such that
for any geodesic segment η and any integer m > 0, the probability that a G-translate

of η is contained in a K-neighbourhood of [γn(tm), γn(tm + |η|)] is at most Bc
√

|η|.

Before embarking on the details, we give a brief overview of the contents of this
section. Fix a geodesic segment η of length 2s. We wish to estimate the probability
that some translate of η is contained in a neighbourhood of [γn(tm), γn(tm+2s)]. Let
U ⊂ (G,µ)Z be the event that some translate of η is contained in a neighbourhood
of [γn(tm), γn(tm+2s)], and let V be the event that some translate of the first half
of η is contained in a neighbourhood of [γn(tm), γn(tm+s)]. The event V is a subset
of U , and so by conditional probability P(U) 6 P(U | V ). Let Ug be the event that
a specific translate gη is contained in a neighbourhood of [γn(tm), γn(tm + 2s)],
and let Vg be the event that the first half of gη is contained in a neighbourhood of
[γn(tm), γn(tm + s)]. The event U is the union of the events Ug, and the event V
is the union of the events Vg. It follows from exponential decay of shadows that
P(Ug | Vg) decays exponentially in s. In order to use this fact to estimate P(U | V )
we need the following extra information: it follows from asymptotic acylindricality
that with high probability any point of V is contained in a bounded number of
sets Vg, and this is enough for the exponential decay in s of P(Ug | Vg) to imply
exponential decay in s of P(U | V ).

We now give the details of the results discussed above. We will need information
about the distribution of the nearest point projections of the locations wmx0 of
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the random walk to the geodesic γn, and we start with the following estimate on
Gromov products, which follows directly from exponential decay of shadows.

Proposition 8.3. Let G be a group acting by isometries on a Gromov hyperbolic
space X, and let µ be a countable, non-elementary, bounded probability distribution
on G. Then there are constants B and c < 1 such that for all 0 6 i 6 n and for
any r > 0,

P((x · wnx)wix > r) 6 Bcr.

Proof. If (x ·wnx)wix > r, then x lies in a shadow Swi
(wnx,R), with d(wix,wnx)−

R > r +O(δ). The random variables wi and w
−1
i wn are independent, so by expo-

nential decay of shadows, this occurs with probability at most Bcr+O(δ). �

Linear progress for the locations of the sample path wmx0 in X , and exponential
decay for the distribution of the Gromov products (x0 · wnx0)wmx0 imply that the
points γn(tm) are reasonably evenly distributed along γn = [x0, wnx0]. We now
make this precise. As µ has bounded support in X , there is a constant D such that
any point in γn lies within distance at most D from a nearest point projection γn(ti)
of one of the locations of the random walk wix, for 0 6 i 6 n, and furthermore,
we may choose D to be an upper bound for the diameter of the support of µ in
X . For any constant s > 0, let Ps be the collection of indices 0 6 i 6 n such
that ti ∈ [s, s +D]. This collection is non-empty if s 6 |γn|. We emphasize that
Ps only contains indices between 0 and n, there may be other locations of the
bi-infinite random walk which have nearest point projections to γn contained in
[γ(s), γ(s+D)], and we consider this separately in Proposition 8.5 below.

Proposition 8.4. Let G be a group which acts by isometries on the hyperbolic
space X, and let µ be a countable, non-elementary, bounded probability distribution
on G. Then there are constants 0 < L1 6 L2, B > 0 and c < 1 such that for any
s > 0 and any n > 0,

P(Ps ⊆ [L1s, L2s]) > 1−Bcs.

x wnx

wmx

γn(s) γn(s+D)

Figure 4. The set Ps defined in Proposition 8.4. The index m
belongs to Ps as its projection to [x,wnx] lies within distance s
and s+D from the basepoint.

Proof. If s > d(x,wnx), then Ps = ∅, and the statement follows immediately, so
we may assume that γn(s) determines a point in γn.

By linear progress with exponential decay (Proposition 2.10), there are constants
L > 0, B1 > 0 and c1 < 1 such that for any m > 0

P(d(x,wmx) 6 Lm) 6 B1c
m
1 .
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Therefore, by summing the geometric series we get

P(d(x,wmx) 6 Lm for any m > N) 6
B1

1− c1
cN1 .

In particular, there are constants B2 and c2 < 1 such that

P(d(x,wmx) > Lm for all m > 2s/L) > 1−B2c
s
2. (11)

If (11) holds, and if m > 2s/L, then d(x,wmx) > Lm > 2s, so by thin triangles
and the definition of the Gromov product, if the nearest point projection γ(tm) of
wmx lies in [γn(s), γn(s+D)], then

(x · wnx)wmx > d(x,wmx) − s−D −O(δ). (12)

By exponential decay for Gromov products (Proposition 8.3), there are constants
B3 and c3 such that P((x · wnx)wmx > r) 6 B3c

r
3. In particular,

P((x · wnx)wmx > Lm− s−D −O(δ)) 6 B3c
Lm−s−D−O(δ)
3 .

This implies that there are constants B4 and c4 < 1 such that for any n

P((x · wnx)wmx > Lm− s−D −O(δ) for any m > 2s/L) 6 B4c
s
4. (13)

Except for a set of probability at most B2c
s
2 + B4c

s
4, we may assume that (11)

holds, and (13) does not hold. Equation (12) then implies that γ(tm) does not lie
in [γn(s), γn(s +D)] for all m > 2s/L. This gives the required upper bound, with
L2 = 2/L, and suitable choices of B and c. As µ has bounded support in X , the
lower bound may be chosen to be L1 = 1/D. �

We now obtain estimates for the nearest point projections of the remaining
locations of the random walk wmx to a geodesic γn = [x,wnx], i.e. for those indices
m 6 0 and m > n.

Proposition 8.5. Let G be a group which acts by isometries on the hyperbolic space
X, and let µ be a countable, non-elementary, bounded probability distribution on
G. Then there are constants B and c such that for all s > 0 the probability that all
of the nearest point projections of {wmx : m 6 0} to γn = [x,wnx] are contained
within distance s of the initial point x, and all of the nearest point projections of
{wmx : m > n} to γn are contained within distance s of the terminal point wnx,
is at least 1−Bcs.

Proof. By the Markov property, the backward random walk (w−nx)n∈N is indepen-
dent of γn. Similarly, the forward random walk starting at wnx is also independent
of γn. More precisely, applying the isometry w−1

n , the random walk w−1
n (wmx)m>n

starting at x, is independent of w−1
n γn. Therefore, it suffices to show that for any

geodesic ray γ starting at x, a random walk has nearest point projection to an
initial segment of γ with high probability.

Let γ be a geodesic ray starting at x, with unit speed parameterization, and
consider the forward locations of the random walk (wnx)n∈N. Let γ(tn) be the
nearest point projection of a location wnx to γ. If tn > s, then wnx lies in the
shadow Sx(γ(s), R), for some R which only depends on δ. By (4) the probability
that (wn)n∈Z ever hits Sx(γ(s), R) is at most Bcs. Therefore the probability that
this does not occur for any index n is at least 1−Bcs. �
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We now consider the following situation: we have chosen an index 0 6 m 6 n,
and a constant s > 0. We wish to estimate the probability that there is a translate
of a geodesic η of length 2s close to γn starting at γn(tm). In order to do this, it
will be convenient to have information about the distribution of the nearest point
projections of wkx0 to γn, and in particular, the sets Ptm+s and Ptm+2s. Proposition
8.6 below assembles the geometric information we need from all of the results above,
and in particular shows that with high probability, there are linear bounds on the
sizes of Ptm+s and Ptm+2s, and that these sets are disjoint.

Proposition 8.6. Let G be a group which acts by isometries on the hyperbolic
space X, and let µ be a countable, non-elementary, bounded probability distribution
on G. Then there are constants 0 < L1 6 L2, such that for any 0 < ǫ < 1, there are
constants B > 0 and c < 1 such that for any 0 6 m 6 n and s > 0, the probability
that all of the following events occur is at least 1−Bcs:

(x · wnx)wmx 6 ǫs (8.6.1)

L1s 6 minPtm+s 6 maxPtm+s 6 L2s (8.6.2)

2L1s 6 minPtm+2s 6 maxPtm+2s 6 2L2s (8.6.3)

(x · wnx)wix 6 ǫs for all i ∈ Ptm+s ∪ Ptm+2s (8.6.4)

maxPtm+s 6 minPtm+2s (8.6.5)

The proposition is illustrated in Figure 5 below, where the index m+ a belongs
to Ptm+s, and m+ b belongs to Ptm+2s.

x wnx

wmx

γn(tm)

wm+ax wm+bx

γ

γn(tm + s) γn(tm + 2s)

Figure 5. Nearest point projections relative to γn(tm).

Proof. We say that a function E(s) : R → R is exponential in s if there are constants
B > 0 and c < 1 such that E(s) 6 Bcs for all s > 0. We observe that the sum of
any two functions which are exponential in s is exponential in s, and if p(s) is a
polynomial in s, and E(s) is exponential in s, then p(s)E(s) is also exponential in
s.

By exponential decay for Gromov products (Proposition 8.3), eq. (8.6.1) holds
with probability at least 1− E1(s), where E1(s) = Bcs.

Let γ be a geodesic from wmx to wnx, with unit speed parametrization, and
write γ(tk) for a nearest point projection of wkx to γ. By the Markov property, we
may apply Proposition 8.5 to γ, and so there are constants B > 0 and c < 1 such
that the probability that

{γ(tk) : k ∈ Z, k 6 m} ⊂ [wmx, γ(s/2)] (14)

holds with probability at least 1− E2(s), where E2(s) = Bcs.
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By thin triangles and assuming that (x · wn)wmx 6 ǫs, if the nearest point
projection to γn of a location wm+ax lies in [γn(tm + s), γn(tm + s) +D], then the
nearest point projection of wm+ax to γ lies in [γ(s), γ(s+ ǫs+D+ δ)]. Proposition
8.4 applied to each of the (ǫs+ δ)/D subsegments of [s, s+ ǫs+D+ δ] of length D
implies that L1s 6 a 6 L2(s+ ǫs+D+ δ) with probability at least 1−E3(s), where
E3(s) = ((ǫs + δ)/D)Bcs. Therefore (8.6.2) holds (with a slightly larger value of
L2). Furthermore, by (14) there are no locations wkx with k 6 m or k > n which
have nearest point projections in [γ(s), γ(s+ ǫs+D + δ)].

The exact same argument works for (8.6.3), as long as tm + 5s/2 6 |γ|.
Exponential decay for Gromov products then implies (8.6.4) with probability at

least 1 − E4(s), where E4(s) = 3(L2 − L1)sBc
ǫs. The constant 3(L2 − L1)s here

derives from the cardinality of Ptm+s ∪ Ptm+2s when (6.8.2) and (6.8.3) hold.
Finally, if there is some b < a, then (x · wm+ax)wm+bx > s −D + O(δ), and so

the probability that this does not occur for any a and b (i.e. (8.6.5) holds) is at
least 1− E5(s), where E5(s) = 3(L2 − L1)sBc

s−D+O(δ).
Therefore all equations (8.6.1)–(8.6.5) hold with probability at least 1 − E(s),

where E(s) is the sum of the functions E1(s)–E5(s) above. All of these functions are
exponential in s, so E(s) is also exponential in s, as required. �

We now show that for any fixed translate gη of a geodesic η of length 2s, if
the first half of η is contained in a neighbourhood of [γn(tm), γn(tm + s)], then the
probability that η is contained in a neighbourhood of [γn(tm), γn(tm + 2s)] decays
exponentially in s.

Proposition 8.7. Let G be a group which acts by isometries on the hyperbolic
space X, and let µ be a countable, non-elementary, bounded probability distribution
on G. Then there are constants B > 0 and c < 1 such that for any geodesic segment
η of length 2s with initial half-segment η1 of length s, if there is an isometry g ∈ G
such that gη1 is contained in a K-neighbourhood of [γn(tm), γn(tm + s)], then the
probability that gη is contained in a K-neighbourhood of [γn(tm), γn(tm +2s)] is at
most Bcs.

Proof. By Proposition 8.6, there are constants B1 and c1 < 1 such that (8.6.1)–
(8.6.5) hold, with probability at least 1−B1c

s
1.

If gη1 is contained in a K-neighbourhood of [γn(tm), γn(tm + s)], then in order
for η to be contained in a K-neighbourhood of [γn(tm), γn(tm + 2s)], for any index
m + b ∈ Ptm+2s the point wm+bx must lie in a shadow Swm+ax(gη(2s), R), where

R depends only on K and δ. As wm+a and w−1
m+awm+b are independent, and there

are at most 2(L2 −L1)s elements of Ptm+2s, this happens with probability at most
2(L2 − L1)sB2c

s
2, by exponential decay for shadows. The result then follows for

suitable choices of B and c. �

Proposition 8.7 above only holds for a fixed translate gη. We will use asymptotic
acylindricality to extend this result to hold for some translate gη, where g runs
over all elements of G. We start with a result from Calegari and Maher [CM15],
which says that every point in γn is close to some location wkx0. We say that a
point γ(t) ∈ γn is K-close if d(γ(t), wix) 6 K for some 0 6 i 6 n. We shall denote
the set of K-close points by γn,K .

Lemma 8.8. [CM15, Lemma 5.13] Given δ > 0 and positive constants D,L and
ǫ, there is a constant K > 0 such that for any sequence of points x0, x1, . . . xn in
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a δ-hyperbolic space X, with d(xi, xi+1) 6 D, and d(x0, xn) > Ln, and for any
geodesic γn from x0 to xn, the total length of γn,K is at least

|γn,K | > (1− ǫ)|γn|.

Let U be the event that some translate of η is contained in a neighbourhood of
[γn(tm), γn(tm + 2s)], and let V be the event that the first half of some translate
of η is contained in a neighbourhood of [γn(tm), γn(tm + s)]. We wish to estimate
P(U). However, as U ⊂ V , the formula for conditional probability implies that
P(U) 6 P(U | V ), so it suffices to estimate P(U | V ).

Let Ug be the event that the translate gη is contained in a neighbourhood of
[γn(tm), γn(tm + 2s)], and let Vg be the event that the first half of the translate
gη is contained in a neighbourhood of [γn(tm), γn(tm + s)]. The set U is equal to
the union of the Ug, and similarly V is equal to the union of the Vg. For each g,
we have P(Ug | Vg) 6 Bcs, by Proposition 8.7. We wish to use this information
to estimate P(U | V ). The key property is that asymptotic acylindricality implies
that with high probability each point of V is contained in a bounded number of sets
Vg, and so exponential decay for the individual conditional probabilities P(Ug | Vg)
gives exponential decay for P(U | V ). We now give the details of this argument.

Let V and {Vi}i∈I be a collection of subsets of a probability space. We say that
the collection of sets {Vi}i∈I covers the set V if V ⊂ ⋃

i∈I Vi. We say that the
covering depth of the {Vi}i∈I is supv∈V #|{i ∈ I : v ∈ Vi}|. If the covering depth
of {Vi}i∈I is N , and all sets are measurable, then P(V ) 6

∑

i∈I P(Vi) 6 NP(V ).
We will also make use of the following definition:

Definition 8.9. We say that a pair of points x and y are (K,N)-stable if

#|StabK(x) ∩ StabK(y)| 6 N.

We say that a geodesic segment η is (K,N)-stable if its endpoints are (K,N)-stable.

Proof (of Proposition 8.2). Let s := |η|/2. We wish to estimate the probability
that a translate of η is contained in a K-neighbourhood of [γ(tm), γ(tm +2s)]. Let
η1 be the initial subsegment of η with length |η1| = |η|/2 = s. By Proposition 8.6,
we may assume that (8.6.1)–(8.6.5) hold, with probability at least 1−Bcs.

Let us suppose now that a translate gη is contained in a K-neighbourhood of
[γ(tm), γ(tm + 2s)]. By thin triangles, the geodesic gη1 is contained in a (K +
2δ)-neighbourhood of the geodesic [wmx,wm+ax]. By Lemma 8.8, choosing ǫ =
1/8, there is a constant K1 such that there are indices i and j, with wix within
distance K2 = K1 + K + 2δ of [gη1(0), gη1(s/4)] and wjx within distance K2 of
[gη1(3s/4), gη1(s)]. In particular d(wix,wjx) > s/2− 2K2, and so

|i− j| > (s/2− 2K2)/D. (15)

Set K3 = max{K2, 5K} and K4 = K3 + 2K + 2δ.
Let U ⊆ (G,µ)N be the set of sample paths for which a translate of η is contained

in a K-neighbourhood of [γ(tm), γ(tm+2s)], and let Ug be the set of sample paths
for which gη is contained in a K-neighbourhood of [γ(tm), γ(tm + 2s)]. Let V ⊆
(G,µ)N be the set of sample paths for which a translate of η1 is contained in a
K-neighbourhood of [γ(tm), γ(tm + s)], and let Vg be the set of sample paths for
which gη1 is contained in a K-neighbourhood of [γ(tm), γ(tm + s)]. As U ⊆ V , the
conditional probability P(U |V ) satisfies P(U) 6 P(U |V ).
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Proposition 8.7 shows that for any g the conditional probability P(Ug|Vg) decays
exponentially in n. The sets {Ug}g∈G cover U , in fact U =

⋃

g∈G Ug, and similarly

V =
⋃

g∈G Vg. The covering depth of {Vg} is an upper bound on the covering depth

of {Ug}. We now show that with high probability the covering depth of {Vg} is
bounded, i.e. there exists a set S of large measure such that the covering depth of
{Vg ∩ S} is bounded.

We now have two cases. If η1 is not (K3, Nac(K4))-stable, then wix and wjx are
not (K4, Nac(K4))-stable, where Nac(K) is the function from asymptotic acylindri-
cality. Then by Theorem 7.2 the probability that, given i and j, the points wix

and wjx are not (K4, Nac(K4))-stable is at most Bc
√

|j−i| 6 B3c

√
s/2D

3 for some
constants B3 and c3 < 1, where we used eq. (15). Recall that by construction
m 6 i 6 j 6 m+a, and by (8.6.2) we have a 6 L2s, hence there are at most (L2s)

2

such choices of i, j. Hence, the probability that there are such indices i and j is at

most 2(L2s)
2B3c

√
s/2D

3 .
If η1 is (K4, Nac(K4))-stable, then by definition the covering depth of Vg is at

most Nac(K4). By Proposition 8.7, there are constants B4 and c4 < 1 such that
P(Ug|Vg) 6 B4c

s
4. As Ug ⊆ Vg, this implies P(Ug) 6 B4c

s
4P(Vg). Therefore

P(U) 6
∑

g∈G
P(Ug) 6 B4c

s
4

∑

g∈G
P(Vg) 6 Nac(K4)B4c

s
4P(V ) 6 Nac(K4)B4c

s
4.

Therefore, the probability that a translate of η is contained in a K-neighbourhood

of [γn(tm), γn(tm + s)] is at most Bcs + 2(L2s)
2B3c

√
s/2D

3 + Nac(K4)B4c
s
4, which

has square root exponential decay in s, as required. �

We are now interested in the particular case of matching between two subseg-
ments of a given geodesic segment. We call this phenomenon a self-match. Here is
the precise definition.

Definition 8.10. We say that a geodesic segment γ has an (L,K)-self match if
there exist two disjoint subsegment η, η′ ⊆ γ of length L and an element g ∈ G\{1}
such that the Hausdorff distance between gη and η′ is at most K.

Proposition 8.11. Let G be a group acting by isometries on a Gromov hyperbolic
space X, and let µ be a countable, non-elementary, bounded probability distribution
on G, such that the random walk generated by µ is asymptotically acylindrical with
square root exponential decay. Then there is a constant K0, depending only on δ,
such that for any K > K0, any L > 0 and any n > 0 the probability that γn has an

(L,K)-self match is at most n3Bc
√
L.

Proof. Suppose that γn has an (L,K)-self-match. Then there is a subgeodesic
η = [γn(t), γn(t+L)] such that a translate gη is contained in a K-neighbourhood of
γn, and the nearest point projection of gη to γn is disjoint from η. Without loss of
generality, we may assume that the translate of η is contained in aK-neighbourhood
of [γn(t+ L), γn(|γn|)].

There is a constant D such that the nearest point projection of the sample path
{wmx : 0 6 m 6 n} to γn is D-coarsely onto, and the diameter of the support of µ
in X is at most D. Let wmx be a location of the random walk such that the nearest
point projection γn(tm) lies within distance D of the interval of γn between η and
the nearest point projection of gη.
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Then η is contained in a (K + D + δ)-neighbourhood of [x,wmx], and gη is
contained in a (K + D + δ)-neighbourhood of [wmx,wnx]. We do not need to
consider all possible subsegments of [x,wmx], as it suffices to consider those whose
endpoints are integer distances from x. More precisely, there is a subsegment
η− = [γn(a), γn(b)] of η, for integers a 6 b, with |η−| > |η| − 2. If we set K1 :=
K +D+ δ+1, then the geodesic η− K1-matches γ′ = [wmx,wnx] at distance γ

′(c)
from wmx, where c is also an integer.

There are at most n choices for m, at most d(x,wmx) 6 Dm 6 Dn choices
for a, and at most d(wmx,wnx) 6 D(n − m) 6 Dn choices for c, so in total at
most D2n3 choices for the triple (m, a, c). Given a triple of choices m, a and c, and
the constant K1, Proposition 8.2 implies that there are constants B1 and c1 such
that the probability that a translate of η− is contained in a K1-neighbourood of

[wmx,wnx] is at most B1c
√
L−2D

1 . Therefore the probability that γn has an (L,K)-

self-match is at most D2n3B1c
√
L−2D

1 , and the result follows by suitable choices of
B and c (since D is a constant). �

Finally, we record the following result, which is an immediate consequence of
Propositions 8.11 and 7.5.

Corollary 8.12. For any δ > 0, there is a constant K0 with the following prop-
erties. Let G be a group acting by isometries on a δ-hyperbolic space X, and let
µ be a countable, non-elementary, bounded probability distribution on G, such that
the random walk generated by µ is asymptotically acylindrical with square root ex-
ponential decay. Let ℓ > 0 be the drift constant for µ, and let p be a point on an
axis for wn.

Then for any K > K0 and ǫ > 0, there are constants B and c < 1 such that for
any n > 0 the probability that either γn = [x,wnx] or [p, wnp] has an (ǫℓn,K)-self

match is at most Bc
√
n.

9. Asymmetric elements

We now use the non-matching results to show that a generic element is asym-
metric in the following sense. This definition is a variation of the one used in
[MS18].

Definition 9.1. We say that a loxodromic isometry g ∈ G is (ǫ, L,K)-asymmetric
if for any subsegment [p, q] ⊂ αg of length at least ǫd(p, gp), and any group element
h, if h[p, q] is contained in an L-neighbourhood of αg, then there is an i ∈ Z such
that d(hp, gip) 6 K and d(hq, giq) 6 K.

Proposition 9.2. Given a constant δ > 0, for any constants ǫ > 0 and L > 0,
there is a constant K such that if G is a group acting on a δ-hyperbolic space X,
and µ is a countable, non-elementary, bounded probability distribution on G, such
that the random walk generated by µ is asymptotically acylindrical with square root
exponential decay, then there are constants B and c < 1 such that the probability
that wn is (ǫ, L,K)-asymmetric is at least 1−Bc

√
n.

We first recall the following useful fact about isometries of Gromov hyperbolic
spaces.

Proposition 9.3. Given δ > 0 there is a constant K0 such that for any K > K0,
if X is a δ-hyperbolic space, and g is an isometry for which there is a point x ∈ X
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such that d(x, gx) > 3K and (x · g2x)gx 6 K, then g is loxodromic, and the axis αg
of g passes within distance 2K of gx.

Proof. This follows from the following estimate for the translation length of an
isometry:

τ(g) > d(x, gx) − 2(x · g2x)gx −O(δ),

see for example [MT16, Proposition 5.8]. As long as τ(g) > O(δ), then any path
[x, gx] has a subsegment which is contained in an L1-neighbourhood of αg, and so
by thin triangles, the distance from gx to αg is at most (x · g2x)gx+L1+O(δ). �

Let γ1 and γ2 = [x, y] be two (1,K1)-quasigeodesics. Parameterizations γ1 : I1 →
X and γ2 : I2 → X determine orientations of γ1 and γ2. Let x

′ = γ1(s) be a closest
point on γ1 to x, and let y′ = γ1(t) be a closest point on γ1 to y. We say these
orientations agree if s < t for any choice of closest points x′ = γ1(s) and y

′ = γ1(t),
and we say they disagree if s > t for any choice of closest points x′ = γ1(s) and
y′ = γ1(t). In any other case we say that the orientation of γ2 is not well-defined
with respect to γ1. We omit the proof of the following basic fact.

Proposition 9.4. Given constants δ,K1 and L, there is a constant L′ with the
following properties. Let X be a δ-hyperbolic space, and let γ1 and γ2 be (1,K1)-
quasigeodesics in X such that γ2 is contained in an L-neighbourhood of γ1. If the
length of γ2 is at least L′, then the orientation of γ2 either agrees or disagrees with
that of γ1.

Recall that we say a function E(n) : N → N is exponential in n if there are
constants B and c < 1 such that E(n) 6 Bcn for all s > 0. Clearly, if E1(n)
is exponential in n, and E2(n) is exponential in

√
n, then the sum of these two

functions is exponential in
√
n.

We may now complete the proof of Proposition 9.2.

Proof of Proposition 9.2. If L′ > L, then NL(αg) ⊆ NL′(αg), so if the result holds
for some K ′ and L′, it also holds for K ′ and L. Therefore, without loss of generality
we may assume that L > 1 + δ.

Let αwn
be an axis for wn, and let x′ be the nearest point projection of the

basepoint x to αwn
. If the result holds for some ǫ > 0, it holds for any larger value

of ǫ, so we may assume that ǫ 6 1. Furthermore, as αwn
is wn-invariant, after

translating by a power of wn, and possibly replacing ǫ by ǫ/2, we may assume that
win[p, q] is contained in [x′, wnx′]. By abuse of notation, we will relabel win[p, q] as
[p, q].

If h[p, q] is contained in a L-neighbourhood of αwn
, then as αwn

is wn-invariant,
then after replacing h by wknh, we may assume that the nearest point projection of
h[p, q] to αwn

is contained in [x′, w2
nx

′]. By abuse of notation, we will relabel wknh
as h.

Given L, let L′ be the constant from Proposition 9.4. As d(x′, wnx′) tends to
infinity almost surely as n tends to infinity, we may assume that d(x′, wnx′) > L′/ǫ,
and so d(p, q) > L′. In particular, the orientation of h[p, q] is well defined with
respect to αwn

, and either agrees, or disagrees with the orientation of αwn
.

First consider the case in which h reverses the orientation of [p, q] with respect
to αwn

, as illustrated below in Figure 6. We will show that if this occurs, it gives
a self-match for γn which occurs with probability which is at most exponential in√
n.
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αwnx′ wnx
′ w2

nx
′p q

hq hp

Figure 6. An orientation reversing translate of [p, q] close to αwn
.

By replacing [p, q] by either its initial half, or terminal half, we may assume that
either [p, q] or w−1

n [p, q] has nearest point projection to αwn
contained in [x′, wnx′].

Again replacing [p, q] by either its initial half, or terminal half, we may assume that
h[p, q] lies within distance K of a disjoint subsegment of [x′, wnx′] of length at least
ǫd(x′, wnx′)/4. This gives rise to an (ǫd(x′, wnx′)/4,K)-self match for [x′, wnx′].

Let ℓ > 0 be the linear progress constant for µ, and fix some 0 < ǫ′ < min{ℓ, 1}/2.
The subsegment [x′, wnx′] of αwn

is contained in an L1-neighbourhood of [x,wnx],
and by Proposition 7.5, given ǫ′ > 0, there are constants B1 and c1 < 1 such that
the probability that the length of [x′, wnx′] is at least (ℓ− ǫ′)n is at least 1−E1(n),
where E1(n) = B1c

n
1 , where ℓ is the linear progress constant for µ.

This gives an (ǫ(ℓ − ǫ′)n/4,K)-self match for [x,wnx], and by Proposition 8.11,
there are constants B2 and c2 < 1 such that the probability that this occurs is at

most E2(n) = B2c
√
n

2 .
Therefore, the existence of an orientation reversing translate of [p, q] occurs with

probability at most E1(n) + E2(n), which is exponential in
√
n, as required.

We now consider the case in which the orientation of h[p, q] agrees with that of
αwn

. We may replace [p, q] by either its initial half or terminal half subinterval
(in which case replace ǫ by ǫ/2), and possibly replace h by w−1

n h, to ensure that
the nearest point projection of h[p, q] to αwn

is contained in [x′, wnx′]. This is
illustrated below in Figure 7.

αwnx′ wnx
′

hp hq

p′p qt t′

ht ht′

t′′

h2t

Figure 7. An orientation preserving translate of [p, wnp] close to αwn
.

Let p′ be a nearest point on αwn
to hp. If d(p, p′) > ǫℓn/10, then this gives a

linear size self-match of [x,wnx], and again by Proposition 8.11 there are constants

B3 and c3 < 1 such that the probability that this occurs is at most E3(n) = B3c
√
n

3 .
We shall choose a constant K = 4L+O(δ), but in order to guarantee that there

is no circularity in our choice of constants, we now recall some basic facts about
Gromov hyperbolic spaces and give an explicit choice of the O(δ) term in terms of
geometric constants which only depend on δ.

Recall that every axis is a (1,K1)-quasigeodesic, where K1 only depends on δ.
Let L1 be a Morse constant for (1,K1)-quasigeodesics, i.e. any geodesic [x, y] with
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endpoints in a (1,K1)-quasigeodesic α is contained in an L1-neighbourhood of α.
As K1 only depends on δ, the Morse constant L1 also only depends on δ.

Given constants δ > 0 and K1 > 0 there are constants K2 and K3, such that
for any (1,K1)-quasigeodesic α, and any two points x and y in X , if x′ is the
nearest point projection of x to α and y′ is the nearest point projection of y to α,
then if x′ and y′ are distance at least K2 apart, then the geodesic from x to y is
Hausdorff distance at most K3 from the piecewise geodesic path [x, x′] ∪ [x′, y′] ∪
[y′, y]. Furthermore

d(x′, y′) > d(x, y)− d(x, x′)− d(y, y′)−K3. (16)

As K1 only depends on δ, the constants K2 and K3 also only depend on δ. We
may now set K = 4L+ 2K1 + 3K2 + 3K3 + 6δ.

Now suppose that p′ is close to p and the length of [p, p′] is greater than K but
less than ǫℓn/10. Let t be any point in [p′, q]. Let t′ be a closest point on [p, q] to
ht, and let t′′ be a closest point on [p, q] to ht′.

Claim 9.5. We have chosen K sufficiently large such that d(t, t′) > K2.

Proof. By (16),

d(p′, t′) > d(hp, ht)− d(hp, p′)− d(ht, t′)−K3.

As h is an isometry, and d(hp, p′) and d(ht, t′) are at most L, this gives

d(p′, t′) > d(p, t)− 2L−K3.

The points p, p′, t and t′ all lie on the (1,K1)-quasigeodesic αwn
, which implies

d(p′, t) + d(t, t′) > d(p′, t′)−K1, and d(p, t) > d(p, p′) + d(p′, t)−K1. This yields

d(t, t′) > d(p, p′)− 2L− 2K1 −K3.

Our choice of K therefore guarantees that d(t, t′) > K2, as required. In fact
d(t, t′) > 2L + K2 + K3 > K2, and we will now use this stronger bound to ob-
tain a bound on d(t′, t′′). �

Claim 9.6. We have chosen K sufficiently large such that d(t′, t′′) > K2.

Proof. By (16),

d(t′, t′′) > d(ht, ht′)− d(ht, t′)− d(ht′, t′′)−K3.

as h is an isometry, and d(ht, t′) and d(ht′, t′′) are at most L, this gives

d(t′, t′′) > d(t, t′)− 2L−K3.

Our choice of K then implies that d(t′, t′′) > K2, as required. �

As d(t′, t′′) > K2 + L, the geodesic from ht to h2t passes within distance K3 of
[t′, t′′], the Gromov product (t ·h2t)ht is at most K4 := L+K2+K3+2δ. We have
chosen K sufficiently large such that d(t, ht) > 3K4, and so Proposition 9.3 implies
that h is loxodromic, and the axis of h passes within distance 2K4 of αwn

.
As we have assumed that τ(h) 6 ǫℓn/10, this gives a (ǫℓn/10, 2K4)-self match

of [x′, wnx′], and hence of γn = [x,wnx], and so again by Proposition 8.11 there
are constants B4 and c4 < 1 such that the probability that this occurs is at most

E4(n) = B4c
√
n

4 .



40 JOSEPH MAHER, GIULIO TIOZZO

Therefore, we have shown that the case of an orientation preserving translate of
[p, q] occurs with probability at most E3(n) + E4(n), which is exponential in

√
n, as

required. �

10. Genericity of WPD elements

Let us now prove that WPD elements are generic for the random walk as long
as there is one WPD element in the semigroup generated by the support of µ. This
establishes Theorem 1.1 in the Introduction.

Theorem 10.1. Let G be a group acting on a Gromov hyperbolic space X. Let µ
be a countable, non-elementary, bounded, WPD probability distribution on G. Then
there are constants B and c < 1 such that the probability that wn is WPD satisfies

P(wn is WPD) > 1−Bc
√
n.

This has the following immediate corollary.

Corollary 10.2. Let G be a group acting on a Gromov hyperbolic space X. Let µ
be a countable, non-elementary, bounded, WPD probability distribution on G, and
let Λµ be the limit set of Γµ in ∂X. Then endpoints (λ+(g), λ−(g)) of elements g
which are WPD in G are dense in Λµ × Λµ̌.

Proof. By Borel-Cantelli, for almost every sample path ω there is an N such that
wn(ω) is WPD for all n > N . The distribution of endpoints of loxodromic elements
(λ+(wn(ω)), λ

−(wn(ω))) converges in distribution to ν × ν̌, the product of the
hitting and reflected hitting measures, as n tends to infinity. This is shown in
[Mah10a, Theorem 4.1] for the mapping class group acting on the curve complex,
but using the convergence to the boundary result of [MT16, Theorem 1.1], the
argument holds for a non-elementary random walk on a countable group acting on
a Gromov hyperbolic space. For any pair of points (λ, λ′) ∈ Λµ ×Λµ̌, any open set
U×U ′ containing (λ, λ′) has positive measure ν(U)ν̌(U ′) > 0 by [MT16, Proposition
5.4], and so there are infinitely many WPD elements with one endpoint in U and
the other in U ′. In particular, endpoints of WPD elements are dense in Λµ×Λµ̌. �

Given a loxodromic element g, its associatedmaximal elementary subgroup EG(g)
is defined as the stabilizer of the two endpoints of the axis of g, i.e.

EG(g) = StabG({λ+g , λ−g })
(note that elements of EG(g) may permute the two fixed points). We will use the
following result due to Bestvina and Fujiwara [BF02, Proposition 6].

Theorem 10.3. Let G act on X with a WPD element h, with axis αh. Then
EG(h) is the unique maximal virtually cyclic subgroup containing h. Furthermore,
for any constant K > 0 there is a number L, depending on h, δ and K, such that
if g ∈ G is an element which K-coarsely stabilizes a subsegment of αh of length L,
then g lies in EG(h).

That is, if αh is an axis of h, then

EG(h) = {g ∈ G : dHaus(gαh, αh) <∞}.
This is stated in [BF02] for a group action in which all loxodromic elements are
WPD, but the proof works for a group acting non-elementarily on a Gromov hy-
perbolic space which has at least one WPD element.
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If h is WPD, then as EG(h) is virtually cyclic, it contains 〈h〉 as a finite index
subgroup. We now record the following elementary property of EG(h), that the
image of this group in X under the orbit map intersects any bounded set in only
finitely many points.

Proposition 10.4. Let G be a group acting on a Gromov hyperbolic space X which
contains a loxodromic isometry h, and let H be a subgroup of G which contains 〈h〉
as a finite index subgroup. Then for any x ∈ X and K > 0, there is an N such
that #|Hx ∩BK(x)| 6 N .

Proof. As 〈h〉 is a finite index subgroup of H , there is a finite set of group elements
F such that H is a finite union of right cosets 〈h〉f , for f ∈ F . In particular, any
element g ∈ H may be written as g = hkf , for some k ∈ N and f ∈ F . By the
triangle inequality, d(x, gx) > d(x, hkx) − d(x, fx). The distances d(x, fx) have
an upper bound depending on F and x, and d(x, hkx) > kτ(h), so there are only
finitely many group elements g ∈ H with d(x, gx) 6 K. �

It is well known that the following (a priori weaker) definition, which we shall
refer to as axial WPD, is equivalent to WPD.

Definition 10.5. Let G be a group acting on a δ-hyperbolic space X , and let h
be a loxodromic isometry with an axis αh. Then h is an axial WPD if there exists
p ∈ αh such that for any constant K > 0, there is an M > 0, such that

#|StabK(p) ∩ StabK(hMp)| <∞.

Proposition 10.6. Let G be a group acting on a δ-hyperbolic space X, and let h
be a loxodromic isometry. Then h is an axial WPD if and only if h is WPD.

Proof. If h is WPD, then it is an axial WPD. We now show the other direction.
By the triangle inequality, for any x, y ∈ X , g ∈ G, and K > 0

StabK(y) ∩ StabK(hMy) ⊆ StabK′(x) ∩ StabK′(hMx)

where K ′ = K + 2d(x, y). �

We now complete the proof of Theorem 10.1.

Proof of Theorem 10.1. By Proposition 10.6 it suffices to show that wn is an axial
WPD.

By Theorem 2.5, there are constants B1 and c1 < 1 such that the element wn
is loxodromic with probability at least 1 − E(n), where E1(n) = B1c

n
1 , which is

exponential in n. Let αwn
be an axis for wn.

Let L1 be a fellow travelling constant for (1,K1)-quasigeodesics, given by Propo-
sition 2.3. Let δ be a constant of hyperbolicity for the space X . Fix ǫ = 1 > 0,
and then let K2 > 0 be the constant from Proposition 9.2 given these values of δ, ǫ
and L1. As K1 only depends on δ, then L1, and hence K2, also only depends on δ.
Let p be a point on αwn

, which, without loss of generality, we may choose to be a
closest point projection of x to αwn

. This is illustrated below in Figure 8.
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αwn
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wMn xwinx wi+1
n x

winp wi+1
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n p

gwjnx gwj+1
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Figure 8. Fellow-traveling with a translate of αh.

For any loxodromic wn, and for any K > 0, there is an M > 0 sufficiently
large such that d(x,wMn x) > 2(K + τ(wn)). Therefore, by Proposition 2.3, there
is a translate gwjn[p, wnp] which is contained in an L1-neighbourhood of αwn

, with
0 6 j 6 M . By Proposition 9.2, there is an index i with 0 6 i 6 M such
that d(winp, gw

j
np) 6 K2 and d(wi+1

n p, gwj+1
n p) 6 K2, where K2 is the constant

determined above which only depends on δ. In particular, w−i
n gwjn K2-stabilizes

both p and wnp.
By Theorem 7.2, given K2, there are constants N = Nac(K2), B2 and c2 < 1

such that

P (#|StabK2(p, wnp)| 6 N) > 1−B2c
√
n

2 .

Therefore, for any K, there are at most finitely many (in fact N(M + 1)2) choices
for g, and so wn is WPD, with probability at least 1−E1(n)−E2(n), where E2(n) =
B2c

√
n

2 , which is exponential in
√
n, as required. �

11. Small cancellation and normal closure

We will now prove results on the normal closure (Theorems 1.3 and 1.4 in the
Introduction). In order to do so, we will use the following notions of small can-
cellation from [DGO17]. If H ⊆ G is a subgroup, we define its injectivity radius
as

inj(H) := inf{d(gx, x) : g ∈ H \ {1}, x ∈ X}.
Let R be a family of loxodromic elements which is closed under conjugation. We
define its injectivity radius as

inj(R) := inf
g∈R

inf{d(gkx, x), k ∈ Z \ {0}, x ∈ X}.

In particular, if g is loxodromic and R := {hgh−1, h ∈ G} is the set of conjugates
of g, then

inj(R) > τ(g).

Following [DGO17], for a loxodromic element g, let Ax(g) be the 20δ-neighbourhood
of set of points x for which d(x, gx) 6 infy∈X d(y, gy) + δ. If τ(g) is sufficiently
large, then this set is contained in a bounded neighbourhood of a quasi-axis αg for
g.
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Proposition 11.1. Given δ > 0, there are constants A and K, such that if g is a
loxodromic isometry of δ-hyperbolic space X with quasi-axis αg and τ(g) > A, then
Ax(g) ⊂ NK(αg). Furthermore, Ax(g) is 10δ-quasiconvex.

Proof. Let x be a point in X , and let p be a closest point on αg to x. As we may
assume that αg is g-invariant, gp is a closest point on αg to gx, and d(p, gp) > τ(g).
Given δ, there are constants A1 and K1 such that if d(p, gp) > A1, then the union
of the three geodesic segments [x, p], [p, gp] and [gp, gx] is contained in a bounded
neighbourhood of a geodesic [x, gx], and in particular,

d(x, gx) > d(x, p) + d(p, gp) + d(gp, gx)−K1.

This is an elementary application of thin triangles, see for example [MT16, Proposi-
tion 2.3] for the geodesic case. As the quasigeodesics constants for the quasi-axis αg
only depend on δ, A1 and K1 may also be chosen to only depend on δ. Therefore,
if d(x, p) > B1 + δ then x does not lie in Ax(x), so we may choose A = A1 and
K = K1 + δ.

For the final statement, see for example Coulon [Cou13, Proposition 3.10]. �

We also define, for g and h loxodromic,

∆(g, h) := diam (N20δ(Ax(g)) ∩N20δ(Ax(h)))

where NR(Y ) denotes the R neighbourhood of the set Y in X .
Let g be a loxodromic element in G. We shall write E+

G(g) for the orientation
preserving subgroup of EG(g), i.e. the subgroup which stabilizes λ+g and λ−g point-
wise. This group is either equal to EG(g) or has index two in EG(g). There are
elements g with EG(g) = E+

G(g), and in fact they are generic.

Corollary 11.2. Let G be a group acting by isometries on a δ-hyperbolic space
X, and let µ be a countable, non-elementary, bounded probability distribution on
G. Then there are constants B and c < 1 such that the probability that wn is
loxodromic with EG(wn) = E+

G(wn) is at least 1−Bc
√
n.

Proof. If E+
G(wn) is index two in EG(wn), then there is an element f which reverses

the orientation of αwn
. This gives an (ℓn/4,K)-self match of [p, wnp], where ℓ > 0

is the positive drift constant for µ, and K is the fellow travelling constant from
Proposition 2.3. However by Corollary 8.12, there are constants B and c < 1 such
that the probability that this occurs is at most Bc

√
n. �

An essential feature of asymmetric elements is the following.

Proposition 11.3. Given δ > 0, there are constants K and L such that if g is a
WPD element of G which is (1, L,K)-asymmetric, with translation length τ(g) >
3L + 2K, then there is a surjective homomorphism φ : E+

G(g) → Z with φ(g) = 1.
In particular,

E+
G(g) = 〈g〉⋉ kerφ,

where kerφ is finite and consists precisely of the elliptic elements of E+
G(g).

Note that the proposition is not true if one replaces E+
G(g) by EG(g), as the

latter may contain infinitely many elliptic elements (think of the action of the
infinite dihedral group on Z).
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Proof. Let p be a point on the axis αg. Let L be the fellow travelling constant

from Proposition 2.3. The axis αg is L-coarsely preserved by E+
G(g). As g is

(1, L,K)-asymmetric, the set {gip : i ∈ Z} is K-coarsely preserved by E+
G(g). As

elements act by isometries, this gives an action of E+
G(g) on Z, defined as follows.

If f ∈ E+
G(g), φ(f) sends gip to the closest gjp to fgip. As g is WPD, the group

E+
G(g) is virtually cyclic, so kerφ is finite. The element g ∈ E+

G(g) maps to 1 ∈ Z

and gives a splitting, so E+
G(g) = 〈g〉⋉ kerφ.

As kerφ is a finite subgroup of G, all elements of kerφ are elliptic. If φ(f) 6= 0,
then as τ(g) > 3L + 2K, the three points p, fp and f2p satisfy d(p, fp) > 3L,
d(fp, f2p) > 3L and (p ·f2p)fp 6 L, and so f is loxodromic by Proposition 9.3. �

Let GWPD denote the set of WPD elements of G, and let H 6 G be a subgroup
of G which contains an element of GWPD. Define

E+
G(H) :=

⋂

g∈H∩GWPD

E+
G(g).

and an equivalent definition holds for EG(H). We will also use the notation E(G) :=
EG(G) when G and H are equal.

Recall that two elements h1, h2 of G are commensurable if some power of h1
is conjugate to some power of h2, and non-commensurable otherwise. The result
below follows from the arguments in [DGO17, Lemma 6.17], but we give the details
for the convenience of the reader.

Proposition 11.4. Let G be a group acting by isometries on a Gromov hyperbolic
space X, and let H be a non-elementary subgroup of G which contains an element
of GWPD. Then there exist two independent, WPD elements h1, h2 in H such that

E+
G(h1) ∩E+

G(h2) = E+
G(H).

Moreover, for any K > 0 there exists an element f in H such that for any z ∈ αf
one has

StabK(z, fz) ⊆ E+
G(H).

Proof. By [DGO17, Corollary 6.12], there exist two non-commensurable, loxo-
dromic, WPD elements h1, h2 in H (pick h1 as one such element, then apply
Corollary 6.12 with the subgroup called G in Corollary 6.12 chosen to be H , the
subgroup called H in the Corollary 6.12 chosen to be EG(h1) and a ∈ H \EG(h1)).
Let N be the normalizer of H in G, i.e.

N := {x ∈ G : xHx−1 = H}

which contains the group H . Denote as T (hi) the set of finite order elements in
E+
G(hi). In E

+
G(hi) every conjugacy class is finite (since all conjugate elements have

equal translation length), so a result of Neumann [Neu51] then implies that the set
T (hi) of finite order elements is a finite group. Let us suppose that for any x ∈ N
we have

E+
G(xh1x

−1) ∩ E+
G(h2) 6= E+

G(H).

Note moreover that

E+
G(xh1x

−1) ∩E+
G(h2) = xT (h1)x

−1 ∩ T (h2).
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Given (s, t) ∈ P := T (h1) × (T (h2) \ E+(H)), we pick y ∈ N such ysy−1 = t, if it
exists, and y(s, t) = 1 otherwise. Let CN (t) be the centralizer of t in N . Now, we
claim that

N =
⋃

(s,t)∈P
y(s, t)CN (t).

Indeed, let x ∈ N . Then since xT (h1)x
−1 ∩ T (h2) 6= E+

G(H), then there exists
s ∈ T (h1) and t ∈ T (h2) \E+(H) such that s = x−1tx ∈ T (h1). Thus if y = y(s, t)
then s = x−1tx = y−1ty, so xy−1 ∈ CN (t). This means that there is a finite
collection of cosets of the subgroups CN (t), with t ∈ T (h2) \ E+(H), which covers
N , and a theorem of Neumann [Neu54] then implies that at least one of these
subgroups has finite index in N . Therefore, there is a t ∈ T (h2) \E+

G(H) such that
CN (t) has finite index in N . Hence, if h ∈ N is a WPD element, then there exists
k > 0 such that hkt = thk, hence t ∈ E+

G(h). Thus, t ∈ E+
G(N) ⊆ E+

G(H), which
is a contradiction. Finally, let us note that the claim implies that h1 and h2 are
independent. In fact, as both h1 and h2 are WPD, the fixed point sets of h1 and
h2 cannot have a common point. This is because in this case both h1 and h2 would
coarsely stabilize a large segment of the axis of h1, which by Theorem 10.3, would
imply that E+

G(h1) = E+
G(h2), contradicting the non-commensurability of h1 and

h2.
We now prove the second claim. As h1 and h2 are independent loxodromic

isometries, the ping-pong lemma implies that for any n > 0 sufficiently large, the
orbit map gives a quasi-isometric embedding of the free group 〈hn1 , hn2 〉 in X . In
particular, for all m > 0, the element f := hnm1 hnm2 is loxodromic.

Fix some K > 0, and let L1 be the fellow travelling constant for (1,K1)-
quasigeodesics from Proposition 2.4. Let L2 be the constant given by Theorem
10.3 using the constant K + 2δ + L1. We may choose m sufficiently large so that
there are two segments η1 ⊆ αh1 and η2 ⊆ αh2 of length > L2, and a segment
η ⊆ αf such that

η1 ∪ η2 ⊆ NL1(η).

Thus, if h belongs to StabK(z, fz), then for some k ∈ Z the isometry fkhf−k

(K + 2δ)-coarsely stabilizes the segment η, hence it also (K + 2δ + L1)-coarsely
stabilizes both η1 and η2, and preserves the orientation of the axes. Then by
Theorem 10.3 it is contained in

E+
G(h1) ∩E+

G(h2) = E+
G(H).

Thus, h belongs to f−kE+
G(H)fk = E+

G(H), as required. �

From now on we shall assume that the probability distribution µ is reversible,
so Γµ is a group. We will use the notation Eµ := E+

G(Γµ).

Corollary 11.5. Given δ > 0 there are constants K and L with the following
properties. Let G be a group acting by isometries on a δ−hyperbolic space X,
and let µ be a countable, non-elementary, reversible, bounded, WPD probability
distribution on G. Then there are constants B and c < 1 such that the probability
that wn is loxodromic, (1, L,K)-asymmetric, WPD with

EG(wn) = E+
G(wn) = 〈wn〉⋉ Eµ

is at least 1 − Bc
√
n. In particular, if Eµ is trivial, then EG(wn) is cyclic with

probability at least 1−Bc
√
n.



46 JOSEPH MAHER, GIULIO TIOZZO

Proof. We are left with proving the last claim. By Proposition 9.2, we know that
there are constants B1 and c1 < 1 such that the probability that wn is (1, L,K)-

asymmetric is at least 1− B1c
√
n

1 , hence

E+
G(wn) = 〈wn〉⋉ kerφ

where φ : E+
G → Z is the homomorphism given in Proposition 11.3. Now, since wn

is asymmetric, we have that kerφ is the (finite) set of elliptic elements in E+
G(wn),

hence it is contained in StabK(p, wnp) where p is some point on the axis of wn.
Let f ∈ Γµ be given by Proposition 11.4. By Proposition 7.6, there are constants
B2 and c2 < 1 such that the probability the axis of wn has a (L,K)-match with a

translate of the axis of f is at least 1−B2c
√
n

2 . Therefore, for K ′ = 2K+2δ we get
for some z ∈ αf

kerφ ⊆ StabK(p, wnp) ⊆ gStabK′(z, fz)g−1 ⊆ E+
G(Γµ) = Eµ.

The result then holds for suitable choices of B and c < 1. �

Given g ∈ G a loxodromic element, let us define the fellow travelling constant
for g as

∆(g) := sup
h∈G\E(g)

∆(g, hgh−1)

where E(g) is the maximal elementary subgroup which contains g.

Definition 11.6. ([DGO17, Definition 6.25]) Let X be a δ-hyperbolic space with
δ > 0, and let R be a family of loxodromic isometries of X which is closed under
conjugation. Then we say that R satisfies the (A, ǫ)-small cancellation condition if
the following holds:

(1) inj(R) > Aδ
(2) ∆(g, h) 6 ǫ · inj(R) for all g 6= h±1 ∈ R.

We will now prove that the cyclic subgroup generated by a power of wn satisfies
the small cancellation condition. First of all, we show that the fellow travelling
constant between translates of the axis is sublinear in n.

Proposition 11.7. Let G be a group of isometries of a δ-hyperbolic metric space X,
and µ a countable, non-elementary, reversible, bounded, WPD probability measure
on G. Let ℓ > 0 be the drift of the random walk. Then for any 0 < ǫ < 1, there
are constants B and c < 1 such that for all n the fellow travelling constant of wn
satisfies

P(∆(wn) > ǫℓn) 6 Bc
√
n.

Proof. By Proposition 11.1, there is an L such that N20δ(Ax(wn)) ⊂ NL/2(αwn
).

Therefore, if ∆(wn) > ǫℓn, there is a translate hαwn
, with h 6∈ E(wn), such that

αwn
and hαwn

have a (ǫℓn, L)-match. This by definition means that there is a
segment η = [p, q] ⊆ αwn

with |η| equal to ǫℓn, such that hη is contained in an
L-neighbourhood of αwn

. By replacing η with winη for some i ∈ Z and replacing ǫ
by ǫ/2, we can assume that η ⊆ [x′, wnx′] where x′ is a closest point projection of
the basepoint x to αwn

.
By Proposition 9.2, there are constants B1 and c1 < 1 such that the element

wn is (ǫ, L,K)-asymmetric with probability at least 1−B1c
√
n

1 . Thus there is a K,
depending on ǫ and L, such that up to replacing h by wjnh for some j ∈ Z, we may
assume that d(p, hp) 6 K and d(q, hq) 6 K.
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Let f be given an in the second part of Proposition 11.4. As [p, q] has length
ǫℓn and is contained in [x′, wnx′], by Lemma 7.7 there are constants B2 and c2 < 1
such that the probability that it contains a match with a large subsegment of a

translate gαf of the axis αf (where g ∈ Γµ) is at least 1−B2c
√
n

2 .
As h K-coarsely stabilizes this subsegment, this implies that there exists z ∈ αf

such that by Proposition 11.4,

h ∈ StabK(gz, gfz) = gStabK(z, fz)g−1 ⊆ gE+
G(Γµ)g

−1 = E+
G(Γµ),

hence, since by construction E+
G(Γµ) ⊆ E+

G(wn) and, by Corollary 11.2, there are

constants B3 and c3 < 1 such that the probability that E+
G(wn) = EG(wn) is at

least 1 − B3c
√
n

3 . Therefore, by suitable choices of B and c < 1, any such h must

lie in EG(wn) with probability at least 1 − Bc
√
n. However, this contradicts our

initial choice of h, and implies that ∆(wn) > ǫℓn with probability at most Bc
√
n,

as required. �

11.1. The structure of the normal closure. The last step we need to under-
stand the structure of the normal closure 〈〈wn〉〉 of wn in G is to take care of the
fact that the elementary subgroup E+

G(wn) need not be cyclic, so we may have to
pass to a power of wn. However, the power may be chosen to be a constant which
only depends on G and µ, as we now explain.

Let Γµ be the group generated by the support of µ, and let Eµ := E+
G(Γµ). By

definition, Eµ is a normal subgroup of Γµ, hence one has the homomorphism

ϕ : Γµ → Aut Eµ (17)

given by conjugation: g 7→ (k 7→ gkg−1). We will denote as Hµ := ϕ(Γµ) the image
of ϕ.

Lemma 11.8. The image of ϕ in Aut Eµ is trivial if and only if Eµ = Z(Γµ).

Proof. First note that Z(Γµ) ⊆ Eµ. In fact, let g ∈ Z(Γµ) and let h ∈ Γµ be
a loxodromic, WPD element. Then ghg−1 = h, hence Fix(ghg−1) = gFix(h) =
Fix(h), hence g ∈ EG(h). Since this is true for any h WPD, then g ∈ Eµ.

Moreover, the kernel of ϕ is the set of g which commute with every element of
Eµ, hence the image is trivial if and only if every element of Eµ commutes with
every element of Γµ, which means that Eµ ⊆ Z(Γµ). �

Now, by Corollary 11.5, with probability which tends to 1, EG(wn) is the semidi-
rect product

EG(wn) = 〈wn〉⋉ Eµ

and the group structure of EG(wn) is determined by the map 〈wn〉 → Aut Eµ,
hence by the image ϕ(wn) in Aut Eµ.

Lemma 11.9. Let K be a finite group, let ψ ∈ Aut K, and consider the semidirect
product

H = Z⋉ψ K

where we denote as t a generator for Z, so that tkt−1 = ψ(k) for any k ∈ K. Then:

(1) for any a ∈ Z \ {0}, if ψ(ta) = 1, then the normal closure of ta in H is
cyclic and equal to 〈ta〉;

(2) if ψ(t) 6= 1, then the normal closure of t in H is not cyclic and not free;



48 JOSEPH MAHER, GIULIO TIOZZO

Proof. Let u = ta, and suppose that ψ(u) = 1. Then for any k ∈ K we have
kuk−1 = u and since by construction u commutes with t, then u commutes with
H , hence the normal closure 〈〈u〉〉 = 〈u〉 is infinite cyclic.

Now, since H is virtually cyclic and the subgroup of a free group is free, then the
normal closure N := 〈〈t〉〉 is free if and only if it is infinite cyclic. Moreover, since t
generates Z, the only cyclic group which contains 〈t〉 is 〈t〉 itself. Hence 〈〈t〉〉 is free
if and only if it coincides with 〈t〉. If the image φ(t) is not trivial, then there exists
k ∈ K such that ktk−1 6= t, hence the normal closure is larger than 〈t〉, hence not
free. �

Lemma 11.10. Let h ∈ G be a loxodromic, WPD element, and let g ∈ G. Then if
ghg−1 ∈ EG(h), then g ∈ EG(h).

Proof. Suppose that ghg−1 ∈ EG(h), and let Λ := {λ+, λ−} be the set of fixed
points of h on ∂X . Then by the assumption ghg−1 also fixes Λ, hence by conjugating
h fixes g−1Λ. Since h fixes exactly two points on the boundary, then Λ = g−1Λ,
which implies that g ∈ EG(h). �

We are now ready to present the main Theorem (Theorems 1.4 and 1.3) and its
proof.

Theorem 11.11. Let G be a group acting on a Gromov hyperbolic space X, and
let µ be a countable, non-elementary, reversible, bounded, WPD probability measure
on G. Let us denote as Hµ the image of Γµ in Aut Eµ. Then:

(1) the probability that the normal closure 〈〈wn〉〉 of wn in G is free satisfies

P(〈〈wn〉〉 is free) →
1

#Hµ

as n → ∞. As a corollary, this probability tends to 1 if and only if Eµ =
Z(Γµ).

(2) Moreover, if k = #Hµ, then

P(〈〈wkn〉〉 is free) → 1

as n→ ∞, and indeed there exist constant B > 0, c < 1 such that

P(〈〈wkn〉〉 is free) > 1−Bc
√
n

for any n.
(3) Finally, if Nn := 〈〈wkn〉〉, then for any R > 0 the injectivity radius of Nn

satisfies for any n

P(inj(Nn) > R) > 1−Bc
√
n.

Proof. Let us choose α > 0. Then by [DGO17, Proposition 6.23] there exist con-
stants (A, ǫ) such that if a family {Nλ}λ∈Λ of subgroups, closed under conjugation,
satisfies the small cancellation condition, then {Nλ} is α-rotating on a hyperbolic
graph X ′. Note that X ′ is obtained from X in the following way. First, one chooses
a hyperbolic graph X ′′ which is equivariantly quasi-isometric to X . This is cho-
sen once and for all; let K be the Lipschitz constant of the map X → X ′′. Now,
the coned off space X ′ is obtained by coning off certain quasi-convex subsets of
a rescaled copy λX ′′. However, by looking at the proof one realizes that one can
make sure that λ 6 1 in all cases (indeed, in the language of [DGO17, Proposition

6.23], the correct choice is λ = min
(

δc
δ ,

∆c

∆ , 1
)

, with A = max
(

injc(r0)
δc

, injc(r0)δ

)

and
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ǫ = ∆c

injc(r0)
.) Thus, the map X → X ′ is K-Lipschitz, where K only depends on X

and not on the constant α.
Let us fix α > 200, and let (A, ǫ) chosen as above. Let ℓ > 0 be the drift of the

random walk. Then by Theorem 2.5 (3), there are constants B1 and c1 < 1 such
that

P

(

τ(wn) >
ℓn

2

)

> 1−B1c
n
1 .

Moreover, by Proposition 11.7, there are constants B2 and c2 < 1 such that

P

(

∆(wn) 6
ǫℓn

2

)

> 1−B2c
√
n

2 .

Now by Corollary 11.5, there are constants B3 and c3 < 1 such that

P
(

E+
G(wn) = 〈wn〉⋉ Eµ

)

> 1−B3c
√
n

3 .

Thus, for suitable choices of B4 and c4 < 1,

P
(

τ(wn) > Aδ,∆(wn) 6 ǫτ(wn) and E
+
G(wn) = 〈wn〉⋉ Eµ

)

> 1−B4c
√
n

4 . (18)

In particular, with probability which tends to 1 we have

EG(wn) = 〈wn〉⋉ϕn
Eµ

where ϕn = ϕ(wn) is the image of wn under the homomorphism

ϕ : Γµ → Aut Eµ.

Now, we have two cases.

(1) if ϕ(wn) = 1, then all conjugates of wn in G belong to different elementary
subgroups.

In fact, suppose that there exists g ∈ G such that gwng
−1 ∈ EG(g).

Then, by Lemma 11.10 one has g ∈ EG(wn), and by Lemma 11.9 one has
gwng

−1 = wn.
Now, consider the family of subgroups Rn := {gwng−1}g∈G. Finally,

let Nn = 〈〈Hn〉〉 be the normal closure of Hn. By equation (18) above,

with probability at least 1 − B4c
√
n

4 , the family Rn satisfies the (A, ǫ)-
small cancellation condition, hence it is an α-rotating family. Then by
[DGO17, Corollary 5.4], the normal closure of wn is the free product of
conjugates of 〈wn〉, hence it is free.

(2) if ϕ(wn) 6= 1, then there exists g ∈ Γµ such that gwng
−1 6= wn. This

implies that the intersection

〈〈wn〉〉 ∩ EG(wn)
is larger than 〈wn〉, hence the normal closure 〈〈wn〉〉 cannot be a free group.

By the above discussion, the probability that the normal closure of wn in G is
free converges to the probability that wn maps to the identity in Eµ. In order to
compute such probability, note that under the map

ϕ : Γµ → Aut Eµ

the random walk on Γµ pushes forward to a random walk on Aut Eµ, which is a
finite group. Hence, the random walk equidistributes on the elements of the image
of ϕ into Aut Eµ, hence the probability that ϕ(wn) = 1 converges to 1

#Hµ
, where

#Hµ is the cardinality of the image of ϕ. That is, the normal closure of wn is free
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if and only if the image ϕ(wn) = 1, and the probability of this happening tends to
1

#Hµ
, so

P(〈〈wn〉〉 is free) →
1

#Hµ
.

Hence, this probability tends to 1 if and only if the image group Hµ = ϕ(Γµ) is
the trivial group, hence by Lemma 11.8 if and only if Eµ = Z(Γµ).

To prove (ii), if k = #Hµ, then every element in the image of ϕ has order which
divides k, hence ϕ(wkn) = ϕ(wn)

k = 1. Thus, as in the previous argument, if one
defines Hn := 〈wkn〉, the probability that the family Rn := {gwkng−1}g∈G satisfies
the small cancellation condition tends to 1, hence the probability that the normal
closure Nn := 〈〈wkn〉〉 is free satisfies

P(〈〈wkn〉〉 is free) > 1−Bc
√
n

for suitable choices of B > 0, c < 1.

Now, to prove (iii), given R > 0 let α be such that δαK = R. Then one can choose

(A, ǫ) as before for such α. Then with probability at least 1−B4c
√
n

4 , the family Rn

is α-rotating. Hence, by [DGO17, Theorem 5.3], for each g ∈ Nn, either g belongs
to some conjugate of Hn or is loxodromic on X ′ with translation length at least
αδ. Then since the map X → X ′ is K-Lipschitz, such elements have translation
length on X at least αδK . On the other hand, by Theorem 2.5 (3) we know that with

probability at least 1−B1c
n
1 , the isometry wkn is loxodromic on X with translation

length > R. Therefore for suitable choices of B5 and c5 < 1, the probability that

the injectivity radius of Nn is at least R is at least 1 − B5c
√
n

5 . The stated result
then follows for suitable choices of B and c < 1. �

Corollary 11.12. Let G be a group acting on a Gromov hyperbolic space, and let µ
be a countable, non-elementary, reversible, bounded, WPD probability measure on
G. Then there is a constant k = #Hµ such that if Nn(ω) := 〈〈wkn〉〉 is the normal
closure of wkn in G, then for almost every sample path ω, the sequence

(N1(ω), N2(ω), . . . , Nn(ω), . . . )

contains infinitely many different normal subgroups of G.

Proof. Fix M > 0, and consider the set

AM := {ω : sup
n

inj(Nn(ω)) 6M}.

We claim that P(AM ) = 0. Indeed, suppose P(AM ) = ǫ > 0. Then by Theorem
11.11, there exists n0 such that for n > n0

P(inj(Nn) >M + 1) > 1− ǫ

which is a contradiction because such a set must be disjoint from AM . Then for
almost every ω we have

lim sup
n→∞

inj(Nn(ω)) = +∞,

which implies the claim. �

This completes the proof of Theorem 1.3 in the Introduction.
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11.2. Application to the mapping class group. In the case of the mapping
class group, we may answer [Mar18, Problem 10.11] and establish Theorem 1.11,
as we now explain.

Corollary 11.13. Let S be a surface of finite type whose mapping class group
Mod(S) is infinite. Let µ be a probability distribution on Mod(S) such that the
support of µ has bounded image in the curve complex under the orbit map, and for
which Γµ = Mod(S). Then there are constants B > 0 and c < 1 such that the
probability that the normal closure 〈〈wn〉〉 is a free subgroup of Mod(S) is at least

1−Bc
√
n.

This follows immediately from Theorem 11.11, and the fact that forG = Mod(Sg,n)
the mapping class group of a finite type surface, the group E+

G(G) is equal to the
center of G, as we now explain.

We shall write Sg,n for the surface of genus g with n punctures. The mapping
class groups S0,n with n 6 3 are finite, and so the results of this paper do not apply
to them, and we shall ignore them for the purposes of this section. If the mapping
class group is infinite, then the center of the mapping class group Mod(Sg,n) is
trivial, unless Sg,n is one of the following four surfaces: S1,0, S1,1, S1,2 or S2,0, in
which case the center is Z/2Z, see [FM12, Section 3.4].

Proposition 11.14. Let Sg,n be a surface of genus g with n punctures, and suppose

that its mapping class group G = Mod(Sg,n) is infinite. Then E+
G(G) is equal to

the center of G.

Proof. To simplify notation, we shall write E(G) for E+
G(G). If S is a surface whose

mapping class group has trivial center, then by the Nielsen realization theorem, due
to Kerckhoff [Ker83], any non-trivial finite subgroup F of G = Mod(S) is realized
by a group of isometries of a hyperbolic metric on S, giving rise to an orbifold cover
S → S. The fixed point set of F in Teichmüller space T (S) is a totally geodesically
embedded image of T (S), which has strictly smaller dimension. In particular, there
are elements of G which do not preserve the fixed point set of F , and so F is not
normal in G. This implies that E(G) is trivial for those mapping class groups with
trivial center.

We now consider the cases in which G = Mod(S) is infinite with non-trivial
center. As the center of G is finite, it is contained in E(G), so for these surfaces
E(G) always contains Z/2Z. We now show that E(G) is in fact equal to Z/2Z. We
consider the mapping class group of each surface with non-trivial center in turn.

The quotient of the genus two surface S2,0 by the hyperelliptic involution as an
orbifold is a sphere with six cone points of angle π, but as the mapping class group
acts transitively on these marked points, the quotient mapping class group is iso-
morphic to Mod(S0,6). As E(Mod(S0,6)) is trivial, this implies that E(Mod(S2,0))
is equal to Z/2Z.

The quotient S of the twice punctured torus S1,2 by the hyperelliptic involution
as an orbifold is a sphere with four cone points of angle π, and one puncture. The
quotient of the mapping class group acts transitively on the cone points, and pre-
serves the puncture, and so is isomorphic to an index five subgroup G of Mod(S0,5).
If F is a finite subgroup of G, then again by the Nielsen realization theorem, F
may be realized as a group of isometries of a hyperbolic metric on S, and the fixed
point set of F in T (S) is isometric to the Teichmüller space of the quotient orbifold,
which has strictly smaller dimension. As endpoints of pseudo-Anosov elements are
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dense in PMF(S)×PMF(S), there is an element of Mod(S) which does not pre-
serve the fixed point set, and so F is not normal. Therefore E(G) is trivial, and so
E(Mod(S0,5)) is equal to the center Z/2Z.

Finally, the mapping class groups of S1,0 and S1,1 are equal to SL(2,Z). Quoti-
enting out by the center gives PSL(2,Z), which is isomorphic to (Z/2Z) ⋆ (Z/3Z).
This free product has a trivial maximal normal finite subgroup, so for both of these
surfaces E(Mod(S)) is equal to the center, Z/2Z. �
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