Feuille 1 Application linéaire

Exercice 1 – 1) Soit E et F deux \mathbf{R} -espaces vectoriels. Soit $f: E \to F$ une application linéaire. Montrer que l'image par f du vecteur nul de E est le vecteur nul de F.

- 2) Soit E un \mathbf{R} -espace vectoriel. Fixons un réel a et considérons l'application $h_a: E \to E$ définie pour tout $u \in E$ par $h_a(u) = au$. Montrer que h_a est linéaire.
- 3) Considérons \mathbf{R} muni de sa structure naturelle de \mathbf{R} -espace vectoriel. L'application $f: \mathbf{R} \to \mathbf{R}$ définie pour x réel par $f(x) = x^2$ est-elle linéaire? Déterminer toutes les applications linéaires de \mathbf{R} vers lui même.

Exercice 2 – 1) Soit E et F deux R-espaces vectoriels. Soit $f: E \to F$ une application linéaire. Montrer que si H est un sous-espace vectoriel de E, $f(H) = \{f(u) \text{ tel que } u \in H\}$ est un sous-espace vectoriel de F.

2) Soit E un R-espace vectoriel. Soit $f: E \to E$ une application linéaire. Montrer que $\{u \in E \text{ tel que } f(u) = 17u\}$ est un sous-espace vectoriel de E.

Exercice 3 – On considère l'application linéaire $f: \mathbb{R}^4 \to \mathbb{R}^3$ définie par :

$$f(x_1, x_2, x_3, x_4) = (y_1, y_2, y_3) = (x_1 + x_2 + 4x_3 + x_4, x_1 - 2x_2 - 2x_3 - x_4, 2x_1 + x_2 + 6x_3 - 2x_4)$$
.

Soit \mathcal{B}_3 la base canonique de \mathbf{R}^3 et \mathcal{B}_4 celle de \mathbf{R}^4 .

- 1) Quelle est la matrice A de f dans ces bases canoniques ?
- 2) Préciser l'image des vecteurs de la base \mathcal{B}_4 .

Soit $g: \mathbf{R}^3 \to \mathbf{R}^3$ l'application linéaire définie par :

$$g(1,0,0) = (-2,0,17)$$
, $g(0,1,0) = (3,-1,1)$, $g(0,0,1) = (-2,2,2)$.

3) Préciser g. Quelle est notamment la matrice B de g dans les bases canoniques ?

Exercice 4 – On considére E un **R**-espace vectoriel de dimension 2 de base $\mathcal{B} = (e_1, e_2)$. On considère l'application linéaire $f \in \mathcal{L}_{\mathbf{R}}(E)$ de matrice dans la base \mathcal{B} de E:

$$A = \left(\begin{array}{cc} 9 & -8 \\ -8 & 9 \end{array}\right)$$

- 1) Expliciter $f(e_1)$, $f(e_2)$ et $f(x_1e_2 + x_2e_2)$ à l'aide de la matrice A.
- 2) Déterminer un vecteur non nul $u_1 \in E$ tel que $f(u_1) = u_1$ et un vecteur non nul $u_2 \in E$ tel que $f(u_2) = 17u_2$.
- 3) Montrer que (u_1, u_2) est une base de E. On notera \mathcal{B}' cette base. Donner la matrice B de f dans la base \mathcal{B}' .
- 4) Quelles sont les matrices de passage entre les bases \mathcal{B} et \mathcal{B}' ? Donner la formule liant B, A et P la matrice de passage de \mathcal{B} á \mathcal{B}' . Vérifier cette formule.

Exercice 5 – Soit $f: \mathbb{R}^2 \to \mathbb{R}^2$ l'application linéaire de matrice dans les bases canoniques de \mathbb{R}^2 :

$$A = \left(\begin{array}{cc} 1 & 2 \\ -2 & -4 \end{array}\right)$$

- 1) Montrer que $\mathcal{B}' = ((1,0),(2,-1))$ est une base de \mathbf{R}^2 . Montrer que $\mathcal{B}'' = ((1,-2),(0,1))$ est une base de \mathbf{R}^2 .
- 2) Donner le matrice $B = \mathcal{M}(f, \mathcal{B}'', \mathcal{B}')$.
- 3) Donner les matrices de passage de la base canonique de \mathbb{R}^2 aux bases \mathcal{B}' et \mathcal{B}'' . Rappeler le lien entre A et B.
- 4) Déterminer le noyau et l'image de f.

Exercice 6 – Soit E un \mathbf{R} -espace vectoriel de dimension 4 de base $\mathcal{B} = (e_1, e_2, e_3, e_4)$. Soit F un \mathbf{R} -espace vectoriel de dimension 3 de base $\mathcal{B}' = (e'_1, e'_2, e'_3)$. Soit $f: E \to F$ l'application linéaire de matrice dans les bases \mathcal{B} et \mathcal{B}' :

$$A = \left(\begin{array}{cccc} 1 & 2 & -1 & 1 \\ 2 & -1 & 2 & -2 \\ 3 & 1 & 1 & -1 \end{array}\right) .$$

- 1) Soit $u \in E$ de coordonnées (x_1, x_2, x_3, x_4) dans la base \mathcal{B} , préciser le vecteur f(u).
- 2) Donner une base du noyau de f.
- 3) Donner une base de l'image de f.

Exercice 7 – Soit E un \mathbb{R} -espace vectoriel de dimension 3 de base $\mathcal{B} = (e_1, e_2, e_3)$ et $f \in \mathcal{L}_{\mathbb{R}}(E)$ une application linéaire de matrice A dans la base \mathcal{B} :

$$A = \left(\begin{array}{ccc} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 1 & 1 & 2 \end{array}\right) \quad .$$

- 1) Préciser l'image des vecteurs de base de \mathcal{B} .
- 2) Soit $u = x_1e_1 + x_2e_2 + x_3e_3$, préciser f(u).
- 3) Déterminer une base du noyau de f et une base de son image. Donner uen équation de l'image de f relativement à la base \mathcal{B} .
- 4) Le noyau et l'image de f sont-ils des sous-espaces vectoriels supplémentaires.
- 5) On pose $u_1 = e_1 + e_2 + e_3$, $u_2 = e_2 + e_3$ et $u_3 = e_3$. Montrer que $\mathcal{B}' = (u_1, u_2, u_3)$ est une base de E. Quelles sont les matrices de passage entre les bases \mathcal{B} et \mathcal{B}' . Donner la matrice de f dans la base \mathcal{B}' .