Analyse
Cours Fondements S2
Chapitre 4
Primitive et Calcul Intégral
2021

décembre 2020

Table des matières

4	Dév	Développements limités		
	4.1	Défini	tions et généralités	4
	4.2	Le thé	eorème de Taylor-Young	12
	4.3 Opérations sur les développements limités		tions sur les développements limités	18
		4.3.1	Somme et multiplication par un réel	18
		4.3.2	Développement limité d'un produit	21
		4.3.3	Division en puissances croissantes de fonctions polynomiales	26
		4.3.4	Développement limité d'un quotient	30
		4.3.5	Quelques cas élémentaires de développement limité de fonctions composées	33
		4.3.6	Développement limité et composition d'applications	35
		4.3.7	Développement limité d'une primitive	43
	4.4	Utilisa	ation des développements limités	47
		4.4.1	Pour le calcul de limites	47
		4.4.2	Pour l'étude des propriétés locales de la représentation graphique d'une fonction	51

4 Développements limités

4.1 Définitions et généralités

Commençons par quelques rappels. Soient a_0, a_1, \ldots, a_n des réels. La fonction

$$P: \mathbb{R} \longrightarrow \mathbb{R}, x \longmapsto P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

est appelée une **fonction polynomiale**. Pour $\ell \leq n$, $a_{\ell}x^{\ell}$ est appelé **terme** ou **monome de degré** ℓ de P. Les réels a_0, a_1, \ldots, a_n sont appelés les **coefficients** de P. Si $a_n \neq 0$, nous dirons que P est de **degré** n. Notons que P est dérivable pour tout x et $P'(x) = a_1 + 2a_2x + 3a_3x^2 + \cdots + na_nx^{n-1}$. Enfin P = 0 si et seulement si $a_0 = a_1 = a_2 = \cdots = 0$.

Définition 1 (D.L. en 0) Soient α , β deux réels tels que $\alpha < \beta$. Soit $I =]\alpha, \beta[$. Supposons que $0 \in I$, c'est-à-dire $\alpha < 0 < \beta$. Soit $f: I \to \mathbb{R}$, $x \mapsto f(x)$. Nous dirons que f admet un **développement limité** (**D.L.**) **en** 0 **à l'ordre** n s'il existe des réels a_0, a_1, \ldots, a_n et une fonction $\varepsilon: I \to \mathbb{R}$ avec $\lim_{x\to 0} \varepsilon(x) = 0$ tels que pour tout $x \in I$

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \varepsilon(x).$$

La fonction polynomiale $x \mapsto a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ est appelée la **partie régulière** du développement limité.

La fonction $I \longrightarrow \mathbb{R}$, $x \mapsto f(x) - a_0 - a_1 x - a_2 x^2 - \cdots - a_n x^n = x^n \varepsilon(x)$ est appelée le **reste** du développement limité.

Remarque 1 Toute fonction polynomiale $f(x) = \sum_{k=0}^{d} a_k x^k$ admet un développement limité à tout ordre en 0:

- si $n \ge d$, alors la partie régulière du D.L. d'ordre n en 0 de f est f et le reste la fonction nulle;

- si n < d, alors la partie régulière du D.L. d'ordre n en 0 de f est $\sum_{k=0}^{n} a_k x^k$ et le reste est

$$\sum_{k=n+1}^{d} a_k x^k = x^n \underbrace{\sum_{k=1}^{d-n} a_{k+n} x^k}_{\varepsilon(x)}$$

Autrement dit si $n \in \mathbb{N}$ et si f est une fonction polynomiale, le polynôme P obtenu en supprimant les monomes de f dont le degré excède n (s'il en existe) est un D.L. à l'ordre n au voisinage de 0.

Remarque 2 Soit $f: I \to \mathbb{R}$, $x \mapsto f(x)$. admettant un D.L. en 0 à l'ordre n. Il existe donc des réels a_0, a_1, \ldots, a_n et une fonction $\varepsilon: I \to \mathbb{R}$ avec $\lim_{x\to 0} \varepsilon(x) = 0$ tels que pour tout $x \in I$

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \varepsilon(x)$$

Soit λ un réel. Notons $g: I \to \mathbb{R}$, , la fonction définie par $g(x) = \lambda f(x)$ Nous avons encore pour tout $x \in]-\alpha,\alpha[$:

(*)
$$g(x) = \lambda f(x) = \lambda a_0 + \lambda a_1 x + \lambda a_2 x^2 + \dots + \lambda n a_n x^n + x^n (\lambda \varepsilon(x))$$
.

Nous avons encore : $\lim_{x\to 0}\lambda\varepsilon(x)=0$. Ainsi $g=\lambda f$ admet un D.L. en 0 d'ordre n donné par (*).

Remarque 3 $f:]\alpha, \beta[\to \mathbb{R}$ une fonction admettant un D.L. en 0 d'ordre n. Il existe donc des réels a_0, a_1, \ldots, a_n et une fonction $\varepsilon: I \to \mathbb{R}$ avec $\lim_{x\to 0} \varepsilon(x) = 0$ tels que pour tout $x \in]-\alpha, \alpha[$:

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + x^n \varepsilon(x)$$
.

Notons $g:]-\beta, -\alpha[\to \mathbb{R}, \text{ la fonction définie par } g(x) = f(-x). \text{ Nous avons encore pour tout } x \in]-\beta, -\alpha[:$

(**)
$$g(x) = f(-x) = a_0 - a_1 x + a_2 x^2 + \dots + (-1)^n a_n x^n + (-1)^n x^n \varepsilon(-x)$$
.

Nous avons encore : $\lim_{x\to 0} \varepsilon(-x) = 0$. Ainsi g admet un D.L. en 0 d'ordre n donné par (**).

Définition 2 (D.L. en a) Soient α , β deux réels tels que $\alpha < \beta$. Soit $I =]\alpha, \beta[$. Supposons que $a \in I$, c'est-à-dire $\alpha < 0 < \beta$. Soit $f: I \to \mathbb{R}$, $x \mapsto f(x)$. Nous dirons que f admet un **développement limité** (**D.L.**) en a à l'ordre n s'il existe des réels a_0, a_1, \ldots, a_n et une fonction $\varepsilon: I \to \mathbb{R}$ avec $\lim_{x \to a} \varepsilon(x) = 0$ tels que pour tout $x \in I$

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \ldots + a_n(x - a)^n + (x - a)^n \varepsilon(x).$$

La fonction polynomiale $x \mapsto a_0 + a_1(x-a) + a_2(x-a)^2 + \ldots + a_n(x-a)^n$ est appelée la **partie régulière** du développement limité.

La fonction $I \longrightarrow \mathbb{R}$, $x \mapsto f(x) - a_0 - a_1(x-a) - a_2(x-a)^2 - \dots - a_n(x-a)^n = (x-a)^n \varepsilon(x)$ est appelée le **reste** du développement limité.

Soient α , β deux réels tels que $\alpha < \beta$. Soit $I =]\alpha, \beta[$. Supposons que $a \in I$, c'est-à-dire $\alpha < a < \beta$. Nous avons $\alpha - a < 0 < \beta - a$ de sorte que $0 \in]\alpha - a, \beta - a[$.

Dire que
$$f:]\alpha, \beta[\to \mathbb{R}, x \mapsto f(x) \text{ admet pour D.L. en } a \text{ à l'ordre } n$$

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \ldots + a_n(x - a)^n + \varepsilon(x)(x - a)^n$$
où $\lim_{x \to a} \varepsilon(x) = 0$

équivaut à

dire que
$$f:]\alpha - a, \beta - a[\to \mathbb{R}, h \mapsto f(a+h) \text{ admet pour D.L. en } 0 \text{ à l'ordre } n$$

$$f(a+h) = a_0 + a_1h + a_2h^2 + \ldots + a_nh^n + \varepsilon(a+h)h^n$$
où $\lim_{h\to 0} \varepsilon(a+h) = 0$.

On passe de la première à la seconde situation en remplaçant x par a + h et on passe de la seconde situation à la première en remplaçant a + h par x ou encore h par x - a.

Développement limité et approximation : soient α , β deux réels tels que $\alpha < \beta$. Soient $I =]\alpha, \beta[$, $a \in I$ et $f : I \to \mathbb{R}$. Supposons que f admette un D.L. en a à l'ordre n. Soient a_0, a_1, \ldots, a_n des réels et $\varepsilon : I \to \mathbb{R}$ avec $\lim_{x\to 0} \varepsilon(x) = 0$ tels que pour tout $x \in I$

$$f(x) = \underbrace{a_0 + a_1(x - a) + a_2(x - a)^2 + \ldots + a_n(x - a)^n}_{\text{partie régulière du D.L.}} + \underbrace{\varepsilon(x)(x - a)^n}_{\text{reste du D.L. qui est une « quantité proche de 0 quand } x \text{ est proche de } a \times \times (x - a)^n}_{\text{partie régulière du D.L.}}$$

On peut penser à cette écriture comme une approximation d'ordre n de f(x) au voisinage de a.

Exemple : Déterminons le développement limité à l'ordre 2 en $\sqrt{3}$ de la fonction $f: \mathbb{R} \to \mathbb{R}$ définie par $f(x) = x - x^3$. Pour h réel :

$$f(\sqrt{3}+h) = (\sqrt{3}+h) - (\sqrt{3}+h)^3 = \sqrt{3}+h - 3\sqrt{3}-9h - 3\sqrt{3}h^2 - h^3 = -2\sqrt{3}-8h - 3\sqrt{3}h^2 - h^3.$$

C'est un polynôme en h. Le développement limité à l'ordre 2 en 0 de $f(\sqrt{3}+h)$ est donc

$$f(\sqrt{3} + h) = -2\sqrt{3} - 8h - 3\sqrt{3}h^2 + \varepsilon(h)h^2.$$

où $\lim_{h\to 0} \varepsilon(h) = 0$. Le développement limité à l'ordre 2 en $\sqrt{3}$ de la fonction f est donc :

$$f(x) = x - x^3 = -2\sqrt{3} - 8(x - \sqrt{3}) - 3\sqrt{3}(x - \sqrt{3})^2 + \varepsilon(x)(x - \sqrt{3})^2$$

où $\lim_{x\to 0} \varepsilon(x) = 0$.

Proposition 1 Soient α , β deux réels tels que $\alpha < \beta$. Soient $I =]\alpha, \beta[$, $a \in I$ et $f: I \to \mathbb{R}$. Si f admet un D.L. d'ordre n en a de partie régulière

$$P = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n,$$

alors f admet un D.L. d'ordre $\ell < n$ en a de partie régulière

$$a_0 + a_1(x-a) + a_2(x-a)^2 + \ldots + a_\ell(x-a)^\ell$$
.

Preuve: Soit $\varepsilon: I \to \mathbb{R}$ avec $\lim_{x \to a} \varepsilon(x) = 0$ telle que pour tout $x \in I$:

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \ldots + a_n(x - a)^n + (x - a)^n \varepsilon(x) .$$

Pour $\ell < n$:

$$f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_{\ell}(x-a)^{\ell} + (x-a)^{\ell} \left(a_{\ell+1}(x-a) + a_{\ell+2}(x-a)^2 + \dots + a_n(x-a)^{n-\ell} + (x-a)^{n-\ell} \varepsilon(x) \right).$$

Il reste à constater :

$$\lim_{x \to a} \left(a_{\ell+1}(x-a) + a_{\ell+2}(x-a)^2 + \ldots + a_n(x-a)^{n-\ell} + (x-a)^{n-\ell} \varepsilon(x) \right) = 0$$

pour observer que nous avons un D.L. de f en a d'ordre ℓ .

Exemple : Considérons la fonction :

$$f:]-1,1[\longrightarrow \mathbb{R}, x\longmapsto f(x)=\frac{1}{1-x}.$$

Soit $n \in \mathbb{N}$. Montrons que f admet un D.L. à l'ordre n en 0. Pour x réel :

$$(1-x)(1+x+x^2+\ldots+x^n) = 1-x^{n+1}$$

d'où pour $x \in]-1,1[$:

$$\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + \frac{x}{1-x} x^n.$$

Considérons la fonction :

$$\varepsilon:]-1,1[\longrightarrow \mathbb{R}, x \longmapsto \varepsilon(x) = \frac{x}{1-x}.$$

Pour $x \in]-1,1[$, nous avons ainsi :

$$\frac{1}{1-x} = 1 + x + x^2 + \ldots + x^n + x^n \varepsilon(x) \text{ où } \lim_{x \to 0} \varepsilon(x) = 0.$$

Remarque 4 Attention le développement limité d'une fonction peut être nul à tout ordre en 0 sans que la fonction soit elle-même nulle sur un voisinage; c'est par exemple le cas de la fonction définie par

$$x \mapsto \begin{cases} \exp\left(-\frac{1}{x^2}\right) & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

Proposition 2 La partie régulière et le reste du D.L. à l'ordre n en a d'une fonction $f: I \to \mathbb{R}$ sont uniques.

Preuve : Soient $a_0, a_1, \ldots, a_n, b_0, b_1, \ldots, b_n$ des réels, $\varepsilon_1 : I \to \mathbb{R}$, $\varepsilon_2 : I \to \mathbb{R}$ avec $\lim_{x \to a} \varepsilon_1(x) = \lim_{x \to a} \varepsilon_2(x) = 0$ tels que pour tout $x \in I$:

$$f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n + (x-a)^n \varepsilon_1(x)$$

= $b_0 + b_1(x-a) + b_2(x-a)^2 + \dots + b_n(x-a)^n + (x-a)^n \varepsilon_2(x)$.

Par différence pour tout $x \in I \setminus \{a\}$ nous avons :

$$(a_0 - b_0) + (a_1 - b_1)(x - a) + (a_2 - b_2)(x - a)^2 + \ldots + (a_n - b_n)(x - a)^n + \left(\varepsilon_1(x) - \varepsilon_2(x)\right)(x - a)^n = 0.$$

Faisons tendre x vers a: nous obtenons $a_0 - b_0 = 0$ soit $a_0 = b_0$. Divisons par (x - a); nous obtenons pour tout $x \in I \setminus \{a\}$:

$$(a_1 - b_1) + (a_2 - b_2)(x - a) + \dots + (a_n - b_n)(x - a)^{n-1} + \left(\varepsilon_1(x) - \varepsilon_2(x)\right)(x - a)^{n-1} = 0.$$
 (1)

Faisons tendre x vers a; nous obtenons $a_1 - b_1 = 0$, soit $a_1 = b_1$. Nous itérons et obtenons

$$a_2 = b_2$$
, $a_3 = b_3$, ..., $a_n = b_n$.

De (1) nous déduisons enfin que $\varepsilon_1(x)(x-a)^n = \varepsilon_2(x)(x-1)^n$ pour tout $x \in I$.

Corollaire 1 Soit $\alpha > 0$ un réel. Soit $f:]-\alpha, \alpha[\to \mathbb{R}$ une fonction admettant un D.L. en 0 d'ordre n. Si f est paire, alors la partie régulière de ce D.L. en 0 est paire. Si f est impaire, alors la partie régulière de ce D.L. en 0 est impaire.

Preuve : Rappelons que La fonction f est **paire** si f(-x) = f(x) pour tout $x \in]-\alpha, \alpha[$. La fonction f est **impaire** si f(-x) = -f(x). La preuve se déduit alors de la proposition 2 et des remarques 2 et 3.

Remarque 5 Soient α et β deux réels tels que $\alpha < \beta$. Soient $I =]\alpha, \beta[$, $a \in I$ et $f: I \to \mathbb{R}$.

- La fonction f est continue en a si et seulement si f admet un D.L. d'ordre 0 en a. Le D.L. de f est alors $f(x) = f(a) + \varepsilon(x)(x-a)$ où $\lim_{x \to a} \varepsilon(x) = 0$.
 La fonction f est dérivable en a si et seulement si f admet un D.L. d'ordre 1 en a. Le D.L. de f est
- La fonction f est dérivable en a si et seulement si f admet un D.L. d'ordre 1 en a. Le D.L. de f est alors $f(x) = f(a) + f'(a)(x-a) + \varepsilon(x)(x-a)$ où $\lim_{x \to a} \varepsilon(x) = 0$.

Partie de la preuve : Montrons que si f est dérivable en a, alors f admet un D.L. d'ordre 1 en a. Soit

$$\tau: I \setminus \{a\} \longrightarrow \mathbb{R} , x \longmapsto \tau(x) = \frac{f(x) - f(a)}{x - a} ;$$

notons que $\lim_{x\to a} \tau(x) = f'(a)$. Considérons la fonction $\varepsilon\colon I\to\mathbb{R}$ définie par

$$\varepsilon(x) = \tau(x) - f'(x)$$
 pour $x \in I \setminus \{a\}$ et $\varepsilon(0) = 0$.

Nous obtenons:

- a) d'une part $\lim_{x\to a} \varepsilon(x) = 0$,
- b) d'autre part, pour $x \in I \setminus \{a\}$ l'égalité $(x a)\varepsilon(x) = f(x) f(a) f'(a)(x a)$ et donc aussi pour $x \in I \setminus \{a\}$:

$$f(x) = f(a) + f'(a)(x - a) + (x - a)\varepsilon(x) .$$

Mais cette égalité est aussi vraie pour x = a et donc pour tout $x \in I$. Ainsi :

$$f(x) = f(a) + f'(a)(x - a) + \varepsilon(x)(x - a)$$
 où $\lim_{x \to 0} \varepsilon(x) = 0$.

Conséquence de la remarque :

- Si $f: I \to \mathbb{R}$ admet un D.L. d'ordre $n \ge 0$ en a, alors f est continue en a et dans la partie régulière du D.L. nous avons toujours $a_0 = f(a)$.
- Si $f: I \to \mathbb{R}$ admet un D.L. à l'ordre $n \ge 1$ alors f est dérivable en a et les deux premiers termes de ce D.L. sont f'(a)(x-a) + f(a) c'est-à-dire $a_0 = f(a)$ et $a_1 = f'(a)$.
- Une fonction qui n'est pas continue en 0 n'admet de développement limité à aucun ordre en 0.

Exemple: Considérons la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto \begin{cases} f(x) = x + x^3 \sin\left(\frac{1}{x^2}\right) & \text{pour } x \neq 0 \\ f(0) = 0 \end{cases}$$

a) Montrons que f admet un D.L. d'ordre 2 en 0. Notons $\varepsilon:\mathbb{R}\longrightarrow\mathbb{R}$ la fonction définie par

$$\varepsilon(x) = x \sin\left(\frac{1}{x^2}\right) \text{ pour } x \neq 0 \text{ et } \varepsilon(0) = 0.$$

Pour tout $x \in \mathbb{R}^*$, nous avons : $0 \le \left| x \sin\left(\frac{1}{x^2}\right) \right| \le x$. Il en résulte $\lim_{x \to 0} \varepsilon(x) = 0$. Par suite, pour tout x réel :

$$f(x) = x + x^2 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.

Ainsi, fonction f admet ainsi un développement limité d'ordre 2 en 0 de partie régulière x. Elle est donc en particulier continue en 0 et dérivable en 0 de dérivée f'(0) = 1.

b) Montrons que f n'admet pas de dérivée seconde en 0. Calculons pour ce faire f'(x) pour $x \neq 0$. Posons $u(x) = \frac{1}{x^2}$ alors $u'(x) = -\frac{2}{x^3}$. Nous avons :

$$\left(\sin\left(\frac{1}{x^2}\right)\right)' = \left(\sin(u(x))\right)' = u'(x)\cos(u(x)) = -\frac{2}{x^3}\cos\left(\frac{1}{x^2}\right).$$

Finalement pour $x \neq 0$:

$$f'(x) = 1 + 3x^2 \sin\left(\frac{1}{x^2}\right) + x^3 \left(-\frac{2}{x^3}\cos\left(\frac{1}{x^2}\right)\right)$$
.

Ainsi:

$$f'(x) = \begin{cases} 1 + 3x^2 \sin\left(\frac{1}{x^2}\right) + x^3 \left(-\frac{2}{x^3} \cos\left(\frac{1}{x^2}\right)\right) \text{ pour } x \neq 0\\ f'(0) = 1 \end{cases}$$

Si f''(0) existait, f'(x) serait continue en 0 et $\lim_{x\to 0} f'(x) = 1$; donc pour toute suite $(u_n)_n$ tendant vers 0 quand n tend vers l'infini, nous aurions $\lim_{x\to 0} f'(u_n) = 1$. Posons $u_n = \frac{1}{\sqrt{2\pi n}}$; alors $\frac{1}{u_n^2} = 2\pi n$ et

$$f'(u_n) = 1 + \frac{3}{2\pi n}\sin(2\pi n) - 2\cos(2\pi n)$$

d'où $f'(u_n) = -1$ et $\lim_{n \to +\infty} f'(u_n) = -1$: impossible. Par conséquent f'(x) n'est pas continue en 0 et f''(0) n'existe pas.

4.2 Le théorème de Taylor-Young

L'énoncé suivant assure que sous certaines conditions un développement limité existe toujours.

Théorème 1 (Formule de Taylor-Young) Soient α , β deux réels tels que $\alpha < \beta$. Soient $I =]\alpha, \beta[$ et $f : I \to \mathbb{R}, x \mapsto f(x)$. Soit $n \ge 2$ un entier et soit $a \in I$. Supposons que f soit n - 1 fois dérivable sur I et que f admette une dérivée d'ordre n en a.

Alors f admet comme D.L. à l'ordre n en a :

$$f(x) = f(a) + f'(a)(x - a) + f''(a)\frac{(x - a)^2}{2!} + \dots + f^{(n)}(a)\frac{(x - a)^n}{n!} + \varepsilon(x)(x - a)^n$$

 $o\grave{u}\ \varepsilon\colon I\to\mathbb{R}\ d\acute{e}signe\ une\ fonction\ d\acute{e}finie\ sur\ I\ telle\ que\ \lim_{x\to a}\varepsilon(x)=0.$

Conséquence : Si f est une fonction infiniment dérivable sur un intervalle I, alors f possède des D.L. à tout ordre en tout point a de I.

Développement limité en 0 **de** $\exp(x)$: La formule de Taylor-Young pour la fonction $x \mapsto \exp(x)$ à l'ordre n en 0 s'écrit

$$\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + x^n \varepsilon(x)$$

où ε désigne une fonction qui tend vers 0 lorsque x tend vers 0.

Preuve : La fonction $\exp(x)$ est dérivable à tout ordre. Pour tout x réel $\exp'(x) = \exp(x)$. En itérant, nous obtenons pour tout entier k et tout réel x que $\exp^{(k)}(x) = \exp(x)$ et en particulier $\exp^{(k)}(0) = \exp(0) = 1$. Il reste à appliquer la formule de Taylor-Young.

Développement limité en 0 **de** $\exp(-x)$: La formule de Taylor-Young pour la fonction $x \mapsto \exp(x)$ à l'ordre n en 0 s'écrit

$$\exp(-x) = 1 - x + \frac{x^2}{2} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^n}{n!} + x^n \varepsilon(x)$$

où ε désigne une fonction qui tend vers 0 lorsque x tend vers 0.

Preuve : Utiliser la remarque 3.

Développement limité en 0 **de** $\sin(x)$ **et** $\cos(x)$: La formule de Taylor-Young pour la fonction $x \mapsto \sin(x)$ à l'ordre 2n + 1 en 0 s'écrit

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + x^{2n+1} \varepsilon(x)$$

où ε désigne une fonction qui tend vers 0 lorsque x tend vers 0. La formule de Taylor-Young pour la fonction $x \mapsto \cos(x)$ à l'ordre 2n en 0 s'écrit

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + x^{2n+1} \varepsilon(x)$$

où ε désigne une fonction qui tend vers 0 lorsque x tend vers 0.

Preuve : Les fonctions sin et cos sont dérivables à tout ordre. Pour tout x réel; $\sin'(x) = \cos(x)$ et $\cos'(x) = \sin(x)$. En itérant, il e résulte que par récurrence pour tout entier k et tout réel x:

$$\sin^{(2k)}(x) = (-1)^k \sin(x) , \sin^{(2k+1)}(x) = (-1)^k \cos(x) , \cos^{(2k)}(x) = (-1)^k \cos(x) , \cos^{(2k+1)}(x) = (-1)^{k+1} \sin(x) .$$

En particulier pour tout entier k:

$$\sin^{(2k)}(0) = 0$$
, $\sin^{(2k+1)}(x) = (-1)^k$, $\cos^{(2k)}(0) = (-1)^k$, $\cos^{(2k+1)}(0) = 0$.

Il reste à appliquer la formule de Taylor-Young.

Développement limité en 0 de $\ln(1+x)$ et $\ln(1-x)$: Soit $f:]-1, +\infty[\to \mathbb{R} , x \mapsto f(x) = \ln(1+x),$ la formule de Taylor-Young pour la fonction f donne :

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots + (-1)^{n-1} \frac{x^n}{n} + x^n \varepsilon(x)$$

où ε désigne une fonction qui tend vers 0 lorsque x tend vers 0.

Soit $g:]-\infty, 1[\to \mathbb{R}$, $x\mapsto g(x)=\ln(1-x)$, la formule de Taylor-Young pour la fonction g donne :

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \dots - \frac{x^n}{n} + x^n \varepsilon(x)$$

où ε désigne une fonction qui tend vers 0 lorsque x tend vers 0.

Preuve: La fonction $f:]-1, +\infty[\to \mathbb{R}, x \mapsto \ln(1+x)$ est indéfiniment dérivable. Notons que f(0) = 0. Nous obtenons par récurrence pour tout $x \in]-1, +\infty[$ et tout entier $k \geq 1$:

$$f'(x) = \frac{1}{1+x}$$
, $f''(x) = -\frac{1}{(1+x)^2}$, $f^{(k)}(x) = (-1)^{k-1} \frac{(k-1)!}{(1+x)^k}$.

Il en résulte pour tout entier $k \ge 1$: $f^{(k)}(0) = (-1)^{k-1}(k-1)!$. Ainsi, pour tout entier $k \ge 1$:

$$\frac{f^{(k)}(0)}{k!} x^k = (-1)^{k-1} \frac{(k-1)!}{k!} x^n = (-1)^{k-1} \frac{x^k}{k}.$$

Il reste à écrire la formule de Taylor-Young.

Utiliser la remarque 3 pour obtenir le D.L. en 0 de g

Développement limité en 0 de $\frac{1}{1+x}$ et $\frac{1}{1-x}$: Soit $f:]-1, +\infty[\to \mathbb{R} , x \mapsto f(x) = \frac{1}{1+x}$, la formule de Taylor-Young pour la fonction f donne :

$$\frac{1}{1+x} = 1 - x + x^2 - x^3 + \dots + (-1)^n x^n + x^n \varepsilon(x)$$

où ε est une fonction telle que $\lim_{x\to 0} \varepsilon(x) = 0$.

Soit $g:]-\infty, 1[\to \mathbb{R}, x\mapsto g(x)=\frac{1}{1+x}]$, la formule de Taylor-Young pour la fonction f donne :

$$\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + x^n \varepsilon(x)$$

où ε est une fonction telle que $\lim_{x\to 0} \varepsilon(x) = 0$.

Preuve: Laissée au lecteur.

Développement limité en 0 de $\operatorname{sh}(x) = \frac{\exp(x) - \exp(-x)}{2}$ et $\operatorname{ch}(x) = \frac{\exp(x) + \exp(-x)}{2}$: Ceux sont des fonctions définies sur $\mathbb R$ infiniment dérivables. Les formules de Taylor-Young pour ces fonctions donnent :

$$\operatorname{sh}(x) = \frac{\exp(x) - \exp(-x)}{2} = \sum_{k=0}^{n} \frac{x^{2k+1}}{(2k+1)!} + x^{2n+2}\varepsilon(x)$$

$$ch(x) = \frac{\exp(x) + \exp(-x)}{2} = \sum_{k=0}^{n} \frac{x^{2k}}{(2k)!} + x^{2n+1} \varepsilon(x)$$

où ε sont des fonctions telles que $\lim_{x\to 0} \varepsilon(x) = 0$.

Preuve: Laissée au lecteur.

Rappel : Les coefficients binomiaux Nous rappelons la formule de Pascal qui précise le développement en somme de monomes de $(1+x)^n$ pour tout réel x et pour tout entier n. Convention :

$$0! = 1,$$
 $1! = 1,$ $2! = 2 \times 1,$ \dots $n! = n \times (n-1)! = n \times (n-1) \times (n-2) \times \dots \times 2 \times 1$
Pour $n \in \mathbb{N}$ et $0 \le j \le n$: $\binom{n}{0} = 1! = 1$ et pour $1 < j \le n$: $\binom{n}{j} = \frac{n(n-1)\dots(n-j+1)}{j!}$. De plus $\binom{n+1}{j} = \binom{n}{j} + \binom{n}{j-1}$.

Pour x réel nous avons les égalités suivantes

$$(1+x)^2 = 1 + 2x + x^2$$

$$(1+x)^3 = 1 + 3x + 3x^2 + x^3$$

$$(1+x)^4 = 1 + 4x + 6x^2 + 4x^3 + 1$$

Rappel : Formule de Pascal (1654) : Pour tout réel x et pour tout entier n

$$(1+x)^n = 1 + \binom{n}{1}x + \binom{n}{2}x^2 + \dots + \binom{n}{p}x^p + \dots + \binom{n}{n-1}x^{n-1} + \binom{n}{n}x^n$$
$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \dots + \frac{n(n-1)\dots(n-p+1)}{p!}x^p + \dots + nx^{n-1} + x^n$$

Conséquence sur le D.L. de

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 , $x \longmapsto f(x) = (1+x)^n$

- \diamond pour $k \geq n$: la partie régulière du D.L. de $(1+x)^n$ à l'origine d'ordre k est donnée par le développement de Pascal et son reste est nul;
- \diamond pour k < n: la partie régulière du D.L. de $(1+x)^n$ à l'origine d'ordre k est

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \ldots + \frac{n(n-1)\ldots(n-k+1)}{k!}x^k + x^k\varepsilon(x)$$

où $\lim_{x\to 0} \varepsilon(x) = 0$.

De Pascal à Newton Soit α un réel. Considérons la fonction

$$f:]-1, +\infty[\longrightarrow \mathbb{R}, x \longmapsto f(x) = (1+x)^{\alpha}.$$

Cette fonction est infiniment dérivable de dérivée $f'(x) = \alpha(1+x)^{\alpha-1}$. Par récurrence, pour tout entier k et tout réel $x \in]-1, +\infty[$:

$$f^{(k)}(x) = \alpha(\alpha - 1) \dots (\alpha - k + 1)(1 + x)^{\alpha - k}$$
 et $f^{(k)}(0) = \alpha(\alpha - 1) \dots (\alpha - k + 1)$.

Il en résulte en suivant la formule Taylor-Young :

Formule de Newton : Le D.L. de $(1+x)^{\alpha}$ d'ordre n à l'origine est

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \ldots + \frac{\alpha(\alpha-1)\ldots(\alpha-n+1)}{x!}x^n + x^n\varepsilon(x)$$

où $\lim_{x\to 0} \varepsilon(x) = 0$.

Suivant la remarque 3, Le D.L. de $(1-x)^{\alpha}$ d'ordre n à l'origine est

$$(1-x)^{\alpha} = 1 - \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \dots + (-1)^n \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{x!}x^n + x^n \varepsilon(x)$$

où $\lim_{x\to 0} \varepsilon(x) = 0$.

En particulier pour $\alpha = \frac{1}{2}$ puis $\alpha = -\frac{1}{2}$ nous obtenons

$$\sqrt{1+x} = (1+x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)$$

$$\frac{1}{\sqrt{1+x}} = (1+x)^{-1/2} = 1 - \frac{1}{2}x + \frac{3}{8}x^2 + x^2\varepsilon(x)$$

Remarque 6 La formule de Taylor-Young assure qu'une fonction de classe C^{∞} sur un voisinage de 0 admet des développements limités de tout ordre en 0. La réciproque est fausse.

4.3 Opérations sur les développements limités

4.3.1 Somme et multiplication par un réel

Proposition 3 Soient α , β deux réels tels que $\alpha < \beta$. Soit $I =]\alpha, \beta[$. Soient f et g deux fonctions numériques définies sur I, $a \in I$ et k un nombre réel.

Supposons que f et g aient un D.L. d'ordre n en a. Alors f+g et kf ont un D.L. d'ordre n en a. Plus précisément si pour tout $x \in I$

$$f(x) = a_0 + a_1(x - a) + \dots + a_n(x - a)^n + (x - a)^n \varepsilon_1(x)$$

$$g(x) = b_0 + b_1(x - a) + \dots + b_n(x - a)^n + (x - a)^n \varepsilon_2(x)$$

ou $\lim_{x\to a} \varepsilon_1(x) = 0$ et $\lim_{x\to a} \varepsilon_2(x) = 0$. Alors pour tout $x\in I$

$$(f+g)(x) = f(x) + g(x)$$

= $(a_0 + b_0) + (a_1 + b_1)(x - a) + \dots + (a_n + b_n)(x - a)^n + (x - a)^n \varepsilon(x)$

et

$$(kf)(x) = kf(x) = ka_0 + ka_1(x-a) + \dots + ka_n(x-a)^n + (x-a)^n \varepsilon(x)$$

où ε désigne par chaque formule une fonction tell que $\lim_{x\to a} \varepsilon_1(x) = 0$.

Preuve : Dire que f admet un D.L. en a à l'ordre n c'est dire que pour tout $x \in I$

$$f(x) = a_0 + a_1(x - a) + \dots + a_n(x - a)^n + (x - a)^n \varepsilon_1(x)$$

De même dire que q admet un D.L. en a d'ordre n c'est dire que

$$g(x) = b_0 + b_1(x-a) + \ldots + b_n(x-a)^n + (x-a)^n \varepsilon_2(x)$$

où $\lim_{x\to a} \varepsilon_1(x)=0$ et $\lim_{x\to a} \varepsilon_2(x)=0$. Il en résulte que pour tout $x\in I$

$$(f+g)(x) = f(x) + g(x) = (a_0 + b_0) + (a_1 + b_1)(x - a) + \dots + (a_n + b_n)(x - a)^n + (x - a)^n (\varepsilon_1(x) + \varepsilon_2(x)).$$

Considérons $\varepsilon: I \to \mathbb{R}$, $x \mapsto \varepsilon_1(x) + \varepsilon_2(x)$; nous avons $\lim_{x \to a} \varepsilon(x) = \lim_{x \to a} \varepsilon_1(x) + \lim_{x \to a} \varepsilon_2(x) = 0 + 0 = 0$. Ainsi pour tout $x \in I$ nous avons

$$(f+g)(x) = (a_0 + b_0) + (a_1 + b_1)(x - a) + \dots + (a_n + b_n)(x - a)^n + (x - a)^n \varepsilon(x)$$

où $\lim_{x \to a} \varepsilon(x) = 0$.

L'énnoncé sur kf fait l'objet de la remarque 2 .

Exemple: Considérons la fonction

$$h: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto h(x)x + \frac{x^3}{3} + x^7 + 2\sin(x)$$
.

Donnons le développement limité de h en 0 à l'ordre 6.

Soient

$$f: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto f(x) = x + \frac{x^3}{3} + x^7 \quad \text{et} \quad g: \mathbb{R} \longrightarrow \mathbb{R}, \ x \longmapsto g(x) = \sin(x).$$

Remarquons que h = f + 2g. À partir de

$$g(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^6 \varepsilon_1(x)$$

avec $\lim_{x\to 0} \varepsilon_1(x) = 0$, nous obtenons :

$$2g(x) = 2x - \frac{2x^3}{3!} + \frac{2x^5}{5!} + 2x^6 \varepsilon_1(x).$$

De plus

$$f(x) = x + \frac{x^3}{3} + x^6 \varepsilon_2(x)$$

avec $\lim_{x\to 0} \varepsilon_2(x) = 0$. Il en résulte :

$$h(x) = 3x + \left(\frac{1}{3} - \frac{2}{3!}\right)x^3 + \frac{2}{5!}x^5 + x^6\varepsilon_3(x)$$

soit

$$h(x) = 3x + \frac{2}{5!}x^5 + x^6\varepsilon_3(x)$$

où $\varepsilon_3(x) = 2\varepsilon_1(x) + \varepsilon_2(x)$; en particulier $\lim_{x\to 0} \varepsilon_3(x) = 0$.

Exemple : Considérons la fonction f donnée par

$$f:]-1,1[\longrightarrow \mathbb{R}, x \longmapsto f(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Donnons le D.L. de f en 0 à l'ordre 6. Rappelons que

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} - \frac{x^6}{6} + x^6 \varepsilon_1(x)$$

$$\ln(1-x) = -x - \frac{x^2}{2} - \frac{x^3}{3} - \frac{x^4}{4} - \frac{x^5}{5} - \frac{x^6}{6} + x^6 \varepsilon_2(x)$$

avec $\lim_{x\to 0} \varepsilon_1(x) = \lim_{x\to 0} \varepsilon_2(x) = 0$. Nous en déduisons que

$$-\ln(1-x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \frac{x^5}{5} + \frac{x^6}{6} - x^6 \varepsilon_2(x)$$

puis que

$$\ln(1+x) - \ln(1-x) = 2x + \frac{2}{3}x^3 + \frac{2}{5}x^5 + (\varepsilon_1(x) - \varepsilon_2(x))x^6$$

et enfin que

$$\frac{1}{2} \left(\ln(1+x) - \ln(1-x) \right) = x + \frac{1}{3}x^3 + \frac{1}{5}x^5 + \underbrace{\left(\frac{\varepsilon_1(x)}{2} - \frac{\varepsilon_2(x)}{2} \right)}_{\varepsilon(x)} x^6$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$. Or $f(x) = \frac{1}{2} \left(\ln(1+x) - \ln(1-x) \right)$ donc

$$f(x) = x + \frac{x^3}{3} + \frac{x^5}{5} + x^6 \varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$.

Généralisation: soient $f_1, f_2, ..., f_p: I \to \mathbb{R}$ des fonctions, $k_1, k_2, ..., k_p$ des réels et a un point de I. Si $f_1, f_2, ..., f_p$ ont des D.L. en a d'ordre n, alors $k_1 f_1 + k_2 f_2 + ... + k_p f_p$ admet un D.L. en a d'ordre n dont la partie régulière est

 $k_1 \times$ partie régulière du D.L. de $f_1 + k_2 \times$ partie régulière du D.L. de $f_2 + \cdots + k_p \times$ partie régulière du D.L. de f_p

4.3.2 Développement limité d'un produit

Proposition 4 Soient α et β deux réels tels que $\alpha < \beta$. Posons $I =]\alpha, \beta[$. Soient f et g deux fonctions à valeurs réelles définies sur I. Soit a un point de I. Fixons $n \in \mathbb{N}$.

Si f et g admettent comme D.L. en a d'ordre n

$$f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n + (x-a)^n \varepsilon_1(x)$$

$$g(x) = b_0 + b_1(x-a) + b_2(x-a)^2 + \dots + b_n(x-a)^n + (x-a)^n \varepsilon_2(x)$$

avec $\lim_{x\to a} \varepsilon_1(x) = \lim_{x\to a} \varepsilon_2(x) = 0$, alors (fg)(x) = f(x)g(x) admet un D.L. en a d'ordre n dont la partie régulière s'obtient en conservant les monomes $(x-a)^k$ avec $k \le n$ dans le produit de la partie régulière F du D.L. de f en a d'ordre n par la partie régulière G du D.L. de g en a d'ordre n.

Méthode de calcul : FG est le produit

$$\left(a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n\right) \left(b_0 + b_1(x-a) + b_2(x-a)^2 + \dots + b_n(x-a)^n\right).$$

Gardons les monomes en $(x-a)^k$ avec $k \le n$ dans ces sommes :

$$a_{0}b_{0} + a_{0}b_{1}(x - a) + a_{0}b_{2}(x - a)^{2} + \dots + a_{0}b_{n}(x - a)^{n}$$

$$a_{1}b_{0}(x - a) + a_{1}b_{1}(x - a)^{2} + \dots + a_{1}b_{n-1}(x - a)^{n}$$

$$a_{2}b_{0}(x - a)^{2} + a_{2}b_{1}(x - a)^{3} + \dots + a_{2}b_{n-2}(x - a)^{n}$$

$$\vdots$$

$$a_{n-1}b_{0}(x - a)^{n-1} + a_{n-1}b_{1}(x - a)^{n}$$

$$a_{n}b_{0}(x - a)^{n}$$

Faisons la somme de ces monomes « restants », nous obtenons la partie régulière du D.L. de fg en a à l'ordre n:

$$(fg)(x) = a_0b_0 + (a_0b_1 + a_1b_0)(x - a) + (a_0b_2 + a_1b_1 + a_2b_0)(x - a)^2 + \dots + (a_0b_n + a_1b_{n-1} + \dots + a_pb_{n-p} + \dots + a_nb_0)(x - a)^n + (x - a)^n \varepsilon(x)$$

où $\lim_{x\to 0} \varepsilon(x) = 0$.

Proposition 5 Soient α et β deux réels tels que $\alpha < \beta$. Posons $I =]\alpha, \beta[$. Soient f et g deux fonctions à valeurs réelles définies sur I. Soit a un point de I. Fixons $n \in \mathbb{N}$. et soit $p \leq n$ et $q \leq n$ deux entiers. Si f admet comme D.L. en a d'odre n - q:

$$f(x) = a_p(x-a)^p + a_{p+1}(x-a)^{p+1} + \dots + a_n(x-a)^{n-q} + (x-a)^{n-q} \varepsilon_1(x)$$
 avec $\lim_{x\to a} \varepsilon_1(x) = 0$.

Si g admet comme D.L. en a d'odre n - p:

$$g(x) = b_q(x-a)^q + b_{q+1}(x-a)^{q+1} + \dots + a_n(x-a)^{n-p} + (x-a)^{n-p} \varepsilon_2(x)$$
 avec $\lim_{x\to a} \varepsilon_2(x) = 0$.

Alors, fg admet en a un D.L. d'ordre n. Et si F désigne la partie régulière du D.L. de f en a à l'ordre n-q, et si G désigne la partie régulière du D.L. de g en a à l'ordre n-p, alors la partie régulière du D.L. de fg en a à l'ordre s'obtient en gardant les monomes en $(x-a)^k$ avec $k \le n$ dans le produit FG.

Exemple : Calculons le D.L. en 0 à l'ordre 3 de

$$h:]-1, +\infty[\longrightarrow \mathbb{R}, x \longmapsto h(x) = (1-x+x^2+x^5)\frac{1}{1+x}.$$

Posons

$$f:]-1, +\infty[\longrightarrow \mathbb{R}, x \longmapsto (1-x+x^2+x^5) \text{ et } g:]-1, +\infty[\longrightarrow \mathbb{R}, x \longmapsto \frac{1}{1+x}.$$

Notons que h(x) = f(x)g(x). Le D.L. de f en 0 à l'ordre 5 est

$$f(x) = 1 - x + x^2 + x^5;$$

par troncature le D.L. de f en 0 à l'ordre 3 est

$$f(x) = 1 - x + x^2 + x^3 \varepsilon_1(x);$$

avec $\lim_{x\to 0} \varepsilon_1(x) = 0$. Le D.L. de g en 0 à l'ordre 3 est

$$g(x) = 1 - x + x^2 - x^3 + x^3 \varepsilon_2(x)$$

avec $\lim_{x\to 0} \varepsilon_2(x) = 0$. Pour obtenir le D.L. de f(x)g(x) en 0 à l'ordre 3 on ne conserve que les monomes x^k avec $k \le 3$ dans le produit $(1-x+x^2)(1-x+x^2-x^3)$. Nous obtenons

$$\begin{array}{r}
 1 - x + x^2 - x^3 \\
 -x + x^2 - x^3 \\
 x^2 - x^3
 \end{array}$$

ainsi $1-2x+3x^2-3x^3$ est la partie régulière du D.L. de fg en 0 à l'ordre 3. Autrement dit

$$f(x)g(x) = 1 - 2x + 3x^2 - 3x^3 + x^3\varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$.

Exemple: Calculons le D.L. en 0 à l'ordre 3 de la fonction

$$h:]-1,1[\longrightarrow \mathbb{R} , x \longmapsto h(x) = \sqrt{1+x} \ln(1+x) .$$

Posons

$$f:]-1,1[\longrightarrow \mathbb{R}, x \longmapsto f(x) = \sqrt{1+x}.$$
 et $g:]-1,1[\longrightarrow \mathbb{R}, x \longmapsto h(x) = \ln(1+x).$

Notons que h(x) = f(x)g(x). Rappelons que pour α réel

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^{2} + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^{3} + x^{3}\varepsilon_{1}(x)$$

avec $\lim_{x\to 0} \varepsilon_1(x) = 0$. Ainsi pour $\alpha = \frac{1}{2}$ nous obtenons :

$$f(x) = \sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3 + x^3\varepsilon_2(x)$$

avec $\lim_{x\to 0} \varepsilon_2(x) = 0$. De plus

$$g(x) = \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} + x^3 \varepsilon_3(x)$$

avec $\lim_{x\to 0} \varepsilon_3(x) = 0$. Il en résulte que le D.L. de h en 0 à l'ordre 3 s'obtient en ne gardant que les monomes en x^k , $k \le 3$, dans le produit

$$\left(1 + \frac{1}{2}x - \frac{1}{8}x^2 + \frac{1}{16}x^3\right)\left(x - \frac{x^2}{2} + \frac{x^3}{3}\right).$$

Ces termes sont

$$x - \frac{x^2}{\frac{2}{2}} + \frac{x^3}{\frac{3}{3}}$$

$$\frac{x^2}{2} - \frac{x^3}{4}$$

$$-\frac{1}{8}x^3$$

ainsi $x - \frac{x^3}{24}$ est la partie régulière du D.L. de fg en 0 à l'ordre 3. Autrement dit

$$f(x)g(x) = \sqrt{1+x}\ln(1+x) = x - \frac{x^3}{24} + x^3\varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$.

Exemple : Donnons un D.L. en 0 à l'ordre 12 de la fonction h :

$$h: \mathbb{R} \longrightarrow \mathbb{R}$$
, $x \longmapsto h(x) = (x^7 + x^8)\sin(x)$.

Il existe une fonction ε_1 définie sur \mathbb{R} avec $\lim_{x\to 0} \varepsilon_1(x) = 0$ telle que pour tout x réel :

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \varepsilon_1(x)$$
.

Il en résulte que pour tout x réel :

$$h(x) = (x^7 + x^8) \left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \varepsilon_1(x) \right).$$

Soit

$$h(x) = x^{8} - \frac{x^{10}}{3!} + \frac{x^{12}}{5!} + x^{12}\varepsilon_{1}(x)$$

$$+ x^{9} - \frac{x^{11}}{3!} + \frac{x^{13}}{5!} + x^{13}\varepsilon_{1}(x)$$

$$= x^{8} + x^{9} - \frac{x^{10}}{3!} - \frac{x^{11}}{3!} + \frac{x^{12}}{5!} + \frac{x^{13}}{5!} + x^{12}\varepsilon_{1}(x) + x^{13}\varepsilon_{1}(x)$$

$$= x^{8} + x^{9} - \frac{x^{10}}{3!} - \frac{x^{11}}{3!} + \frac{x^{12}}{5!} + x^{12}\underbrace{\left(\frac{x}{5!} + \varepsilon_{1}(x) + x\varepsilon_{1}(x)\right)}_{\varepsilon(x)}$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$.

Nous aurions pu traiter cet exemple à l'aide de la proposition 5 en observant que la fonction polynomiale $x^7 + x^8$ admet un D.L. en 0 à l'ordre 11 de partie régulière $x^7 + x^8$.

4.3.3 Division en puissances croissantes de fonctions polynomiales

La fonction $f: \mathbb{R} \to \mathbb{R}$ est polynomiale si pour tout réel x il existe a_0, a_1, \ldots, a_n des réels tels que

$$f(x) = a_0 + a_1 + a_2 x^2 + \dots + a_n x^n$$
;

notons que $a_0 = f(0)$, $a_1 = f'(0)$, \cdots , $a_n = \frac{f^{(n)}(0)}{n!}$.

Supposons que f soit non nulle. Rappelons que le $\operatorname{degr\'e} \operatorname{de} f$ est par définition

$$m = degf = \sup\{i \in \mathbb{N} \mid a_i \neq 0\}.$$

Introduisons la **valuation** de f

$$\ell = \operatorname{val}(f) = \inf\{i \in \mathbb{N} \mid a_i \neq 0\}.$$

Nous avons l'inégalité $\ell \leq m$.

Exemple: Si $f(x) = -2x^3 + 5x^7 - x^{17}$, alors val(f) = 3 et deg f = 17.

Remarque 7 Si f est une fonction non nulle, alors $\operatorname{val}(f) \geq \ell$ si et seulement si f s'écrit sous la forme $x^{\ell}v$ où v est une fonction polynomiale.

Lemme 1 Soit $p \le n, \ell$ trois entiers. Soit u et v deux fonctions polynomiales telles que

$$u = a_p x^p + a_{p+1} x^{p+1} + \dots + a_n x^n$$

$$g = b_0 + b_1 x + b_2 x^2 + \dots + b_{\ell} x^{\ell}$$

 $et \text{ val}(u) \ge p, b_0 = g(0) \ne 0. Alors$

$$u = \frac{a_p}{q(0)} x^p g + x^{p+1} v$$

avec v une fonction polynomiale.

Preuve:

Proposition 6 (Division en puissances croissantes) Soient f et g deux fonctions polynomiales. Supposons que $g(0) \neq 0$ (c'est-à-dire que val(g) = 0). Soit $n \in \mathbb{N}$. Il existe alors deux fonctions polynomiales uniques g et g telles que

$$f = \underbrace{q}_{\substack{\text{quotient de la division} \\ \hat{a} \text{ l'ordre } n}} g + x^{n+1} \underbrace{v}_{\substack{\text{reste d'ordre } n \\ \text{de la division}}}$$

avec $\deg q \leq n$ ou q = 0.

Preuve : Démontrons cet énoncé par récurrence sur n :

 \diamond Écrivons f sous la forme $a_0 + a_1x + a_2x^2 + \cdots + a_mx^m$. Le Lemme 1 assure que

$$f = \frac{a_0}{g(0)}g + xv$$

avec deg
$$\left(\frac{a_0}{g(0)}\right) = 0$$
 ou $\frac{a_0}{g(0)} = 0$.

 \diamond Supposons que f s'écrive sous la forme

$$f = qg + x^{n+1}v$$

où v désigne une fonction polynomiale et où $\deg q \leq n$ ou q=0. Le Lemme 1 assure que

$$x^{n+1}v = \frac{v(0)}{g(0)}x^{n+1}g + x^{n+2} \underbrace{u}_{\text{polynomiale}}$$

Par conséquent :

$$f = \underbrace{\left(q + \frac{v(0)}{g(0)}x^{n+1}\right)}_{\text{polynomiale de de degré} \leq n+1} g + x^{n+2} \underbrace{u}_{\text{fonction polynomiale}}$$

Exemple : Divison en puissances croissantes 1+x par $1+x^2$ à l'ordre 2. Nous obtenons pour tout x réel :

(*)
$$1+x=(1+x-x^2)(1+x^2)+x^3(-1+x)$$
.

Donnons comme application un D.L. à l'ordre 2 en 0 de la fonction f définie par

$$f: \mathbb{R} \longrightarrow \mathbb{R} , x \longmapsto f(x) = \frac{1+x}{1+x^2} .$$

Notre division (*) donne pour tout $x \in \mathbb{R}$:

$$f(x) = 1 + x - x^2 + \frac{x^3(-1+x)}{1+x^2} = 1 + x - x^2 + \frac{x(-1+x)}{1+x^2}x^2$$
.

Posons pour tout x réel :

$$\varepsilon(x) = \frac{x(-1+x)}{1+x^2} \ .$$

Remarquons que $\lim_{x\to 0} \varepsilon(x) = 0$. Nous avons donc pour tout tout x réel :

$$f(x) = 1 + x - x^2 + \varepsilon(x)x^2$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$ qui est donc le D.L. à l'ordre 2 en 0 de f.

Exemple : Divisons en puissances croissantes $x - \frac{x^3}{3!} + \frac{x^5}{5!}$ par $1 - \frac{x^2}{2} + \frac{x^4}{4!}$ à l'ordre 5. Nous obtenons pour tout x réel :

$$(**) \quad x + \frac{x^3}{3!} + \frac{x^5}{5!} = \left(x + \frac{1}{3}x^3 + \frac{2}{15}x^5\right)\left(1 - \frac{x^2}{2} + \frac{x^4}{4!}\right) + x^6\left(\frac{19}{360}x - \frac{2}{15.4!}x^3\right).$$

La fonction $1 - \frac{x^2}{2} + \frac{x^4}{4!}$ est non nulle à l'origine et continue (comme toute fonction polynomiale). Il existe donc un intervalle I contenant l'origine sur lequel cette fonction est non nulle. Donnons comme application de notre division un D.L. à l'ordre 5 en 0 de la fonction g définie par

$$g: I \longrightarrow \mathbb{R}, \ x \longmapsto g(x) = \frac{x + \frac{x^3}{3!} + \frac{x^5}{5!}}{1 - \frac{x^2}{2} + \frac{x^4}{4!}}.$$

Notre division (**) donne pour tout $x \in \mathbb{R}$:

$$g(x) = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \frac{\frac{19}{360}x^2 - \frac{2}{15.4!}x^4}{1 - \frac{x^2}{2} + \frac{x^4}{4!}}x^5.$$

Posons pour tout $x \in I$:

$$\varepsilon(x) = \frac{\frac{19}{360}x^2 - \frac{2}{15.4!}x^4}{1 - \frac{x^2}{2} + \frac{x^4}{4!}} = x^2 \frac{\frac{19}{360} - \frac{2}{15.4!}x^2}{1 - \frac{x^2}{2} + \frac{x^4}{4!}}.$$

Remarquons que $\lim_{x\to 0} \varepsilon(x) = 0$. Nous avons donc pour tout tout x réel :

$$g(x) = x + \frac{1}{3}x^3 + \frac{2}{15}x^5 + \varepsilon(x)x^5$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$ qui est donc le D.L. à l'ordre 5 en 0 de f.

4.3.4 Développement limité d'un quotient

Soient α et β deux réels tels que $\alpha < 0 < \beta$. Posons $I =]\alpha, \beta[$. Soient $f : I \to \mathbb{R}$ et $g : I \to \mathbb{R}$ deux fonctions telles que g ne s'annule pas sur I. Considérons le quotient

$$\frac{f}{g}: I \longrightarrow \mathbb{R} \quad , \quad x \longmapsto \frac{f(x)}{g(x)} .$$

Proposition 7 Si f et g ont des D.L. en 0 à l'ordre n de parties régulières F et G, alors $\frac{f}{g}$ a un D.L. en 0 à l'ordre n de partie régulière

- la partie régulière du D.L. de $\frac{F}{G}$ en 0 à l'ordre n; ou encore
- le quotient Q de la division en puissances croissantes d'ordre n de F par G: ce quotient Q est caractérisé par

$$F = QG + x^{n+1}u$$

 $avec \deg Q \le n \ ou \ Q = 0.$

Donnons quelques explications. Soit la division en puissances croissantes de F par G à l'ordre n

$$F = QG + x^{n+1}u$$

avec deg $Q \le n$ ou Q = 0. Nous avons $G(0) = g(0) \ne 0$. Donc au voisinage de 0

$$\frac{F(x)}{G(x)} = Q(x) + \frac{x^{n+1}u(x)}{G(x)} = Q(x) + x^n \underbrace{\left(\frac{xu(x)}{G(x)}\right)}_{\varepsilon(x)}$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$. Ainsi le D.L. de $\frac{F}{G}$ en 0 à l'ordre n est

$$\frac{F(x)}{G(x)} = Q(x) + x^n \varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$.

Remarque 8 [Précisons la Proposition] Si $F = a_p x^p + a_{p+1} x^{p+1} + \cdots + a_n x^n$, alors le quotient de la division en puissances croissantes d'ordre n de F par G est le même que le quotient de la division en puissances croissantes d'ordre n de F par la partie régulière \overline{G} du D.L. de g d'ordre n-p.

Remarque 9 [Cas $a \in I$] Si f et g ont des D.L. en a à l'ordre n de parties régulières F et G, alors $\frac{f}{g}$ a un D.L. en a à l'ordre n. La partie régulière du D.L. de $\frac{f}{g}$ en a à l'ordre n est Q le quotient de la division en puissances croissantes de $(x-a)^k$ d'ordre n de F par G caractérisé par

$$F = QG + (x - a)^{n+1}u$$

avec $\deg Q \leq n$ ou Q = 0.

Remarque 10 [Cas $a \in I$] Le quotient $\frac{f}{g}$ a un D.L. en a d'ordre n si et seulement si la fonction $h \mapsto \frac{f(a+h)}{g(a+h)}$ admet un D.L. en 0 d'ordre n. La partie régulière du D.L. de $\frac{f}{g}$ en a d'ordre n est alors Q(x-a) où Q est la partie régulière du D.L. en 0 à l'ordre n de la fonction $h \mapsto \frac{f(a+h)}{g(a+h)}$.

Exemple: Donnons le D.L. en 0 à l'ordre 5 de

$$\tan: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R}, x \mapsto \tan(x) = \frac{\sin(x)}{\cos(x)}.$$

Notons que la fonction cos ne s'annule pas sur $\left]-\frac{\pi}{2},\frac{\pi}{2}\right[$. De plus

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} + x^5 \varepsilon_1(x) \qquad \lim_{x \to 0} \varepsilon_1(x) = 0$$
$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^4 \varepsilon_2(x) \qquad \lim_{x \to 0} \varepsilon_2(x) = 0$$

donc

$$F(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

est la partie régulière du D.L. de $\sin(x)$ à l'ordre 5 en 0 et

$$G(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!}$$

est la partie régulière du D.L. de cos(x) à l'ordre 5 en 0.

Nous avons vu que la division en puissances croissantes de F par G à l'ordre 5 est

$$F = \left(x + \frac{x^3}{3} + \frac{2x^5}{15}\right)G + x^6\left(\frac{19x}{360} - \frac{2x^3}{15 \times 4!}\right) .$$

Donc le D.L. de tan(x) en 0 à l'ordre 5 est

$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \varepsilon(x)$$

où $\lim_{x\to 0} \varepsilon(x) = 0$.

4.3.5 Quelques cas élémentaires de développement limité de fonctions composées

Soit r > 0 un réel. Posons I =]-r, r[de sorte que $0 \in I$. Soit $f: I \to \mathbb{R}$ une fonction. Supposons que f admette un D.L. en 0 d'ordre n

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + x^n \varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$.

1. Soit k un réel. Si k > 0, on pose $J = \left] - \frac{r}{k}, \frac{r}{k} \right[$ et si k < 0, on pose $J = \left] \frac{r}{k}, -\frac{r}{k} \right[$. La fonction $J \longrightarrow \mathbb{R}$, $x \longmapsto f(kx)$

admet un D.L. en 0 d'ordre n donné par

$$f(kx) = a_0 + ka_1x + k^2a_2x^2 + \ldots + k^na_nx^n + x^n\varepsilon_1(x)$$

avec $\lim_{x\to 0} \varepsilon_1(x) = 0$.

2. Soit $m \ge 1$ un entier. Posons $J =]-r^{1/m}, r^{1/m}[$. La fonction

$$J \longrightarrow \mathbb{R}$$
 , $x \longmapsto f(x^m)$

admet un D.L. en 0 d'ordre nm donné par

$$f(x^m) = a_0 + a_1 x^m + a_2 x^{2m} + \dots + a_n x^{nm} + x^{mn} \varepsilon_2(x)$$

 $\operatorname{ec} \lim_{x \to 0} \varepsilon_2(x) = 0.$

Preuve : Démontrons le second point. Pour tout $x \in I$ nous avons

$$f(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n + x^n \varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$. Par conséquent pour tout $x\in J$ nous avons

$$f(x^m) = a_0 + a_1 x^m + a_2 x^{2m} + \ldots + a_n x^{mn} + x^{mn} \varepsilon(x^m)$$
(2)

Posons $\varepsilon_2(x) = \varepsilon(x^m)$. Alors $\lim_{x\to 0} \varepsilon_2(x) = 0$ et (2) est un D.L. en 0 à l'ordre mn de $f(x^m)$.

Exemple : Soit α un réel. Considérons les fonctions

$$f:]-1,1[\longrightarrow \mathbb{R} \quad , \quad x \longmapsto (1-3x)^{\alpha}$$

et

$$g:]-1,1[\longrightarrow \mathbb{R} \quad , \quad x \longmapsto \sqrt{1-3x^2} \ .$$

Donnons un D.L. de f en 0 à l'ordre 3.

Rappelons que] $-1,1[\longrightarrow \mathbb{R}$, $\,x\mapsto (1+x)^{\alpha}$ admet pour D.L. en 0 à l'ordre 3

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}x^3 + x^3\varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$. En prenant k=-3 nous obtenons via le premier résultat :

$$(1 - 3x)^{\alpha} = 1 - 3\alpha x + \frac{9}{2}\alpha(\alpha - 1)x^{2} - \frac{27}{3!}\alpha(\alpha - 1)(\alpha - 2)x^{3} + x^{3}\varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$.

Donnons un D.L. de g en 0 à l'ordre 6.

D'après ce qui précède nous avons en particulier $(\alpha = -\frac{1}{2})$

$$\sqrt{1-3x} = 1 - \frac{3}{2}x - \frac{9}{8}x^2 - \frac{27}{16}x^3 + x^3\varepsilon(x)$$

avecc $\lim_{x\to 0} \varepsilon(x) = 0$. Alors d'après le second résultat (avec m=2) nous obtenons

$$\sqrt{1-3x^2} = 1 - \frac{3}{2}x^2 - \frac{9}{8}x^4 - \frac{27}{16}x^6 + x^6\varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$.

4.3.6 Développement limité et composition d'applications

Soient α , β , γ et δ quatre réels tels que $\alpha < \beta$ et $\gamma < \delta$.

Posons $I =]\alpha, \beta[$ et $J =]\gamma, \delta[$. Soient $a \in I$, $b \in J$ et $f : I \to \mathbb{R}$, $x \mapsto f(x)$, $g : J \to \mathbb{R}$, $y \mapsto g(y)$. Supposons que b = f(a) et que pour $x \in I$ nous avons $f(x) \in J$. Nous pouvons alors considérer

$$g \circ f : I \longrightarrow \mathbb{R} : quad, \quad x \mapsto (g \circ f)(x) = g(f(x)).$$

Proposition 8 Supposons que

- f admet un D.L. en a à l'ordre n de partie régulière

$$F(x) = b + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n$$

- q admet un D.L. en b à l'ordre n de partie réqulière

$$G(x) = b_0 + b_1(y - b) + b_2(y - b)^2 + \dots + b_n(y - b)^n$$

Alors $g \circ f$ admet un D.L. en a à l'ordre n dont la partie régulière s'obtient en conservant les monomes en $(x-a)^k$ avec $k \leq n$ dans le développement de G(F(x)):

$$b_0 + b_1 \Big(a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n \Big)$$

+
$$b_2 \Big(a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n \Big)^2$$

+
$$\dots + b_n \Big(a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n \Big)^n$$

Remarque 11 Si dans la proposition précedente $a_1 = \cdots = a_{p-1} = 0$ la proposition reste exacte si on suppose seulement que g a un D.L en b à l'ordre m pour un entier m tel que p(m+1) > n. Le polynment G désigne alors la partie régulière g a un D.L en b à l'ordre m.

Exemples d'applications : Soient u et v deux réels tels que u < v. Posons I =]u, v[. Soit $a \in I$. Considérons une fonction $f: I \to \mathbb{R}$. Supposons que h > 0 sur I et que h admette un D.L. en a d'ordre n.

Soit

$$f: I \longrightarrow \mathbb{R}$$
 , $x \longmapsto f(x) = \frac{h(x) - h(a)}{h(a)}$.

On remarque que f(a) = 0 et f(x) > -1 pour $x \in I$. Soit α un réel.

D.L. de $h(x)^{\alpha}$ en a: Soit

$$g:]-1, \infty[\longrightarrow \mathbb{R} \quad , \quad y \mapsto g(y) = h(a)^{\alpha} (1+y)^{\alpha}.$$

Remarquons que $g \circ f$ a bien un sens : si x appartient à I, alors f(x) appartient à $]-1,+\infty[$. De plus g admet un D.L. en 0 d'ordre n (donné par Newton). Considérons

$$g \circ f \colon I \to \mathbb{R},$$
 $x \mapsto g \circ f(x) = g(f(x)) = h(x)^{\alpha};$

la Proposition 8 assure que $h(x)^{\alpha}$ admet un D.L. en a d'ordre n que l'on calcule à partir de celui de h.

D.L. de ln(h(x)) en a: Soit

$$g:]-1, \infty[\longrightarrow \mathbb{R} \quad , \quad y \longmapsto g(y) = \ln(h(a)) + \ln(1+y).$$

Remarquons que $g \circ f$ a bien un sens : si x appartient à I, alors f(x) appartient à $]-1,+\infty[$. De plus g admet un D.L. en 0 d'ordre n. Considérons

$$g \circ f : I \to \mathbb{R}$$
 , $x \longmapsto g \circ f(x) = g(f(x)) = \ln(h(x))$;

la Proposition 8 assure que $\ln(h(x))$ admet un D.L. en a d'ordre n que l'on calcule à partir de celui de h.

Remarque pour $\alpha = -1$: Pour $\alpha = -1$, alors $h(x)^{\alpha} = \frac{1}{h(x)}$. Nous obtenons un moyen de déterminer un D.L. de $\frac{1}{h(x)}$ en a à l'ordre n. Un autre moyen est de calculer le quotient de la division en puissances croissantes de (x - a) de 1 par h.

Exemple 1: Donnons le D.L. de

$$h: \mathbb{R} \longrightarrow \mathbb{R} \quad , \quad x \longmapsto \frac{1}{1+x^2}$$

en 0 à l'ordre 4. Nous avons dejà traité ce type d'exemple dans la sous-section 4.3.5. Considérons les fonctions

$$f: x \mapsto x^2 \quad \text{et} \quad g: x \mapsto \frac{1}{1+x};$$

notons que $h = g \circ f$. Nous avons

$$f(x) = x^2 + x^4 \varepsilon_1(x)$$
 où $\lim_{x \to 0} \varepsilon_1(x) = 0$.

Comme ce D.L. de f commence par du x^2 , Il nous suffira d'avoir le D.L de g en 0 = f(0) d'ordre 2 :

$$g(x) = 1 - x + x^2 + x^2 \varepsilon_2(x)$$
 où $\lim_{x \to 0} \varepsilon_2(x) = 0$.

La partie régulière du D.L de f en 0 d'ordre 4 est $F(x)=x^2$. La partie régulière du D.L de g en 0 d'ordre 2 est $G(x)=1-x+x^2$. Nous avons $G(F(x)=1-x^2+x^4)$. La Proposition 8 assure que

$$g(f(x)) = \frac{1}{1+x^2} = 1 - x^2 + x^4 + x^4 \varepsilon_3(x)$$

où ε_3 est une fonction définie au voisinage de 0 telle que $\lim_{x\to 0} \varepsilon_3(x) = 0$.

Exemple 2 : Donnons le D.L. de

$$h: \mathbb{R} \longrightarrow \mathbb{R}$$
 , $x \longmapsto h(x) = \exp(\sin(x))$

en 0 à l'ordre 4.

Nous avons $\sin(0) = 0$. Rappelons les D.L. en 0 à l'ordre 4 :

$$\sin(x) = x - \frac{x^3}{3!} + x^4 \varepsilon_1(x)$$
 et $\exp(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + x^4 \varepsilon_2(x)$

où ε_1 et ε_2 sont des fonctions définies au voisinage de 0 telles que $\lim_{x\to 0} \varepsilon_1(x) = \lim_{x\to 0} \varepsilon_2(x) = 0$. De plus $\sin(0) = 0$. D'après la Proposition 8 la partie entière du D.L. de h en 0 à l'ordre 4 est :

$$1 + \left(x - \frac{x^3}{3!}\right) + \frac{1}{2}\left(x^2 - \frac{2}{3!}x^4\right) + \frac{1}{3!}x^3 + \frac{1}{4!}x^4 = 1 + x + \frac{x^2}{2} - \frac{x^4}{8}.$$

Il en résulte le D.L. de $\exp(\sin(x))$ en 0 à l'ordre 4

$$\exp(\sin(x)) = 1 + x + \frac{x^2}{2} - \frac{x^4}{8} + x^4 \varepsilon_3(x)$$

où ε_3 est une fonction définie au voisinage de 0 telle que $\lim_{x\to 0} \varepsilon_3(x) = 0$.

Exemple 3: Donnons le D.L. de

$$h: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R} \quad , \quad x \longmapsto h(x) = \frac{1}{\cos(x)}$$

en 0 à l'ordre 6. Écrivons h sous la forme $g \circ f$ avec $g(u) = \frac{1}{1-u}$ et $f(x) = 1 - \cos(x)$. Nous avons :

$$f(x) = \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720} + x^6 \varepsilon(x)$$
 où $\lim_{x \to 0} \varepsilon(x) = 0$.

Comme ce D.L. de f commence par du x^2 , Il nous suffira d'avoir le D.L de g en 0 = f(0) d'ordre 3:

$$g(u) = 1 + u + u^2 + u^3 + u^3 \varepsilon(u)$$
 où $\lim_{u \to 0} \varepsilon(u) = 0$.

Nous obtenons:

$$h(x) = \frac{1}{\cos(x)} = -\left(\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720}\right) - \frac{1}{2}\left(\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720}\right)^2 - \frac{1}{3}\left(\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720}\right)^3 + x^6\varepsilon(x)$$

$$= -\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} - \frac{1}{2}\left(\frac{x^4}{4} - 2\frac{x^2}{2}\frac{x^4}{24}\right) - \frac{1}{3}\frac{x^6}{8} + x^6\varepsilon(x)$$

$$= -\frac{x^2}{2} - \frac{x^4}{12} - \frac{x^6}{45} + x^6\varepsilon(x)$$

où $\lim_{x\to 0} \varepsilon(x) = 0$.

Exemple 4: Déterminons le D.L. de $h(x) = \ln(\cos x)$ au voisinage de 0 à l'ordre 6. On peut écrire $h = g \circ f$ avec $g(u) = \ln(1-u)$ et $f(x) = 1 - \cos x$. D'une part, le D.L de f d'ordre 6 en 0 est

$$f(x) = \frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720} + x^6 \varepsilon(x) .$$

D'autre part le D.L de g d'ordre 3 en 0 = f(0) est

$$\ln(1-u) = -u - \frac{u^2}{2} - \frac{u^3}{3} + u^3 \varepsilon(u)$$

Nous obtenons:

$$h(x) = -\left(\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720}\right) - \frac{1}{2}\left(\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720}\right)^2 - \frac{1}{3}\left(\frac{x^2}{2} - \frac{x^4}{24} + \frac{x^6}{720}\right)^3 + x^6\varepsilon(x)$$

$$= -\frac{x^2}{2} + \frac{x^4}{24} - \frac{x^6}{720} - \frac{1}{2}\left(\frac{x^4}{4} - 2\frac{x^2}{2}\frac{x^4}{24}\right) - \frac{1}{3}\frac{x^6}{8} + x^6\varepsilon(x)$$

$$= -\frac{x^2}{2} - \frac{x^4}{12} - \frac{x^6}{45} + x^6\varepsilon(x)$$

Exemple 5 : Donnons le D.L. en 0 à l'ordre 3 de la fonction

$$h: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R} \quad , \quad x \longmapsto \frac{1}{1 - \sin(x)} .$$

Considérons

$$f: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R}, \ x \mapsto \sin(x) \quad \text{et} \quad g: \left] -1, 1 \right[\longrightarrow \mathbb{R}, \ y \mapsto \frac{1}{1-y}.$$

Notons que f(0) = 0 et que si $-\frac{\pi}{2} < x < \frac{\pi}{2}$, alors $-1 < \sin x < 1$ de sorte que $g \circ f$ est défini sur $\left] -\frac{\pi}{2}, \frac{\pi}{2} \right[$. Nous constatons que

$$g \circ f : \left[-\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R} \quad , \quad x \longmapsto (g \circ f)(x) = g(f(x)) = h(x)$$

i.e. $g \circ f = h$. La fonction h est dérivable à tout ordre comme composée de telles fonctions. Par suite h admet un D.L. en 0 à tout ordre. Donnons deux solutions.

Solution 1 : Nous appliquons la proposition 8. Le D.L. de f en 0 à l'ordre 3 est

$$f(x) = x - \frac{x^3}{3!} + x^3 \varepsilon(x)$$
 où $\lim_{x \to 0} \varepsilon(x) = 0$

La partie régulière de ce D.L. est $F(x) = x - \frac{x^3}{3!}$.

Le D.L. de g en 0 à l'ordre 3 est

$$g(y) = 1 + y + y^2 + y^3 + y^3 \varepsilon(y)$$
 où $\lim_{y \to 0} \varepsilon(y) = 0$.

La partie régulière de ce D.L. est $G(y) = 1 + y + y^2 + y^3$.

Ainsi $h(x) = g \circ f(x)$ admet en 0 un D.L. à l'ordre 3 dont la partie régulière s'obtient en conservant les monomes x^k , $k \leq 3$, dans le développement de

$$G(F(x)) = 1 + \left(x - \frac{x^3}{3!}\right) + \left(x - \frac{x^3}{3!}\right)^2 + \left(x - \frac{x^3}{3!}\right)^3.$$

Nous obtenons

$$1 + x - \frac{x^3}{3!} + x^2 + x^3 = 1 + x + x^2 + \frac{5}{6}x^3.$$

Par conséquent

$$\frac{1}{1 - \sin(x)} = 1 + x + x^2 + \frac{5}{6}x^3 + x^3\varepsilon(x)$$
 où $\lim_{x \to 0} \varepsilon(x) = 0$

Solution 2 : Nous passerons par une division en puissance croissante. Le D.L. en 0 à l'ordre 3 de $1 - \sin(x)$ est

$$1 - x + \frac{x^3}{3!} + x^3 \varepsilon(x) \quad \text{où} \quad \lim_{x \to 0} \varepsilon(x) = 0$$

De plus $1 - \sin(0) = 1 - 0 = 1 \neq 0$. Donc $\frac{1}{1 - \sin(x)}$ admet un D.L. en 0 à l'ordre 3 dont la partie régulière est le quotient de 1 par $1 - x + \frac{x^3}{3!}$ en puissances croissantes à l'ordre 3. Il s'en suit que

$$\frac{1}{1 - \sin(x)} = 1 + x + x^2 + \frac{5}{6}x^3 + x^3\varepsilon(x)$$
 où $\lim_{x \to 0} \varepsilon(x) = 0$

Exemple 6 : Donnons un D.L.en 0 à l'ordre 5. de

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 , $x \mapsto 1 - \cos(2x)$.

. La fonction f est dérivable à tout ordre. D'après le Théorème de Taylor-Young f admet un D.L. en tout réel à tout ordre. Donnons trois solutions.

Solution 1 : Le théorème de Taylor-Young assure que le D.L. de f en 0 à l'ordre 5 est

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \frac{f^{(4)}(0)}{4!}x^4 + \frac{f^{(5)}(0)}{5!}x^5 + x^5\varepsilon(x) \quad \text{où} \quad \lim_{x\to 0}\varepsilon(x) = 0.$$

Calculons f(0), f'(0), f''(0), f''(0), $f^{(3)}(0)$, $f^{(4)}(0)$, $f^{(5)}(0)$. Rappelons que $(\cos u(x))' = -u'(x)\sin u(x)$ et $(\sin u(x))' = u'(x)\cos u(x)$. Ainsi

$$f(x) = 1 - \cos(2x)$$
 $f'(x) = -(-2\sin(2x)) = 2\sin(2x)$ $f''(x) = 4\cos(2x)$ $f^{(3)}(x) = -8\sin(2x)$ $f^{(4)}(x) = -16\cos(2x)$ $f^{(5)}(x) = 32\sin(2x)$

donc

$$f(0) = 0$$
 $f'(0) = 0$ $f''(0) = 4$ $f^{(3)}(0) = 0$ $f^{(4)}(0) = -16$ $f^{(5)}(0) = 0$

et

$$f(0) = 0$$
 $f'(0) = 0$ $\frac{f''(0)}{2!} = 2$ $\frac{f^{(3)}(0)}{3!} = 0$ $\frac{f^{(4)}(0)}{4!} = -\frac{2}{3}$ $\frac{f^{(5)}(0)}{5!} = 0$.

Il en résulte que

$$1 - \cos(2x) = 2x^2 - \frac{2}{3}x^4 + x^5\varepsilon(x)$$
 où $\lim_{x \to 0} \varepsilon(x) = 0$.

Solution 2 : A partir de

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + x^5 \varepsilon(x)$$
 où $\lim_{x \to 0} \varepsilon(x) = 0$

nous obtenons

$$cos(2x) = 1 - \frac{(2x)^2}{2!} + \frac{(2x)^4}{4!} + (2x)^5 \varepsilon (2x)$$
$$= 1 - 2x^2 + \frac{16}{24} + x^5 \varepsilon_1(x)$$
$$= 1 - 2x^2 + \frac{2}{3}x^4 + x^5 \varepsilon_1(x)$$

avec $\varepsilon_1(x) = 2^5 \varepsilon(2x)$ et donc $\lim_{x\to 0} \varepsilon_1(x) = 0$. Finalement

$$1 - \cos(2x) = 1 - \left(1 - 2x^2 + \frac{2}{3}x^4 + x^5\varepsilon_1(x)\right)$$
$$= 1 - 1 + 2x^2 - \frac{2}{3}x^4 - x^5\varepsilon_1(x)$$
$$= 2x^2 - \frac{2}{3}x^4 + x^5\varepsilon_2(x)$$

avec $\varepsilon_2(x) = -\varepsilon_1(x)$ et $\lim_{x \to 0} \varepsilon_2(x) = 0$.

Solution 3 : Notons que $1 - \cos(2x) = 2\sin^2(x) = f(g(x))$ avec $f(x) = 2x^2$ et $g(x) = \sin(x)$. D'une part le développement limité de g en 0 à l'ordre 1 est

$$x - \frac{x^3}{3!} + x^3 \varepsilon(x) ,$$

d'autre part le développement limité de f en 0 à l'ordre 5 est f. De plus $g(0) = \sin(0) = 0$. Par suite le développement limité de f(g(x)) en 0 est

$$2x^2 - \frac{2}{3}x^4 + x^5\varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$.

4.3.7 Développement limité d'une primitive

Soient α et β deux réels tels que $\alpha < \beta$, $I =]\alpha, \beta[$ et $a \in I$. Considérons la fonction

$$f: I \longrightarrow \mathbb{R}$$
 , $x \mapsto f(x)$.

Proposition 9 Soit n un entier. Supposons que f admette une primitive sur I et un D.L. en a d'ordre n

$$f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n + (x-a)^n \varepsilon(x)$$
 où $\lim_{x \to a} \varepsilon(x) = 0$.

Alors toute primitive F de f admet un D.L. en a d'ordre n+1. Ce D.L. est

$$F(x) = \underbrace{F(a) + a_0(x-a) + a_1 \frac{(x-a)^2}{2} + \ldots + a_n \frac{(x-a)^{n+1}}{n+1}}_{primitive\ de\ la\ partie\ régulière\ du\ D.L.\ de\ f\ qui\ vaut\ F(a)\ en\ a} + (x-a)^{n+1} \varepsilon_1(x) \quad \text{où} \quad \lim_{x\to a} \varepsilon_1(x) = 0.$$

Corollaire 2 Supposons que f admette un D.L. en a d'ordre n

$$f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \ldots + a_n(x-a)^n + (x-a)^n \varepsilon(x)$$
 où $\lim_{x \to a} \varepsilon_2(x) = 0$.

Si f' admet un D.L. en a à l'ordre n-1, alors le D.L. de f' est

$$f'(x) = a_1 + 2a_2(x-a) + 3a_3(x-a)^2 + \ldots + na_n(x-a)^{n-1} + (x-a)^{n-1}\varepsilon_3(x)$$
 où $\lim_{x\to a} \varepsilon_3(x) = 0$.

.

Exemple: Considérons

$$h: \mathbb{R} \longrightarrow \mathbb{R}$$
 , $x \longmapsto h(x) = \frac{1}{1+x^2}$.

Soit $n \in \mathbb{N}$. La fonction h est dérivable à tout ordre donc admet un D.L. en 0 à l'ordre n. Notons H la primitive de h nulle en 0:

$$H: \mathbb{R} \longrightarrow \mathbb{R}$$
 , $x \longmapsto H(x) = \int_0^x \frac{1}{1+t^2} dt$.

Soit

$$g:]-1,+\infty[\longrightarrow \mathbb{R} \quad , \quad x\longmapsto g(x)=\frac{1}{1+x} \ .$$

Le D.L. de g en 0 à l'ordre n est

$$g(x) = 1 - x + x^2 + \ldots + (-1)^n x^n + x^n \varepsilon(x)$$
 où $\lim_{x \to 0} \varepsilon(x) = 0$

Par suite pour tout réel

$$g(x^2) = h(x) = 1 - x^2 + x^4 + \dots + (-1)^n x^{2n} + x^{2n} \varepsilon(x^2)$$

avec $\varepsilon_1(x)=\varepsilon(x^2)$ et $\lim_{x\to 0}\varepsilon_1(x)=0$. Ainsi le D.L. de h en 0 à l'ordre 2n est

$$h(x) = 1 - x^2 + x^4 + \dots + (-1)^n x^{2n} + x^{2n} \varepsilon_1(x)$$
 où $\lim_{x \to 0} \varepsilon_1(x) = 0$

D'après la Proposition 9 la fonction H admet un D.L. en 0 à l'ordre 2n+1

$$H(x) = x - \frac{x^3}{3} + \frac{x^5}{5} + \dots + (-1)^n + x^{2n+1} \varepsilon_2(x)$$
 où $\lim_{x \to 0} \varepsilon_2(x) = 0$

Rappel : dans le cours de Fondements 1 il est démontré que

$$\tan: \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R} \quad , \quad x \mapsto \tan(x)$$

est une bijection dérivable. Son application inverse ou réciproque est

$$\arctan: \mathbb{R} \longrightarrow \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[.$$

De plus arctan est dérivable et

$$\arctan'(x) = \frac{1}{1+x^2} .$$

La fonction H est la fonction arctan.

Exemple 1: Soit

$$F: \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] \longrightarrow \mathbb{R} \quad , \quad F(x) = \ln(\cos x) \quad , \quad F(0) = 0.$$

La fonction F est dérivable à tout ordre. Donnons le D.L. de F en 0 à l'ordre 6.

$$F': \left] -\frac{\pi}{2}, \frac{\pi}{2} \right[\longrightarrow \mathbb{R} \quad , \quad F'(x) = -\frac{\sin(x)}{\cos(x)} = \tan(x).$$

Ainsi $F = -\int_0^x \tan(t) dt$. Nous avons vu que le D.L. de tan en 0 à l'ordre 5 est

$$\tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + x^5 \varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$. La Proposition 9 assure que le D.L. de $\int_0^x \tan(t) dt$ à l'ordre 6 est

$$\int_0^x \tan(t) dt = \frac{x^2}{2} + \frac{x^4}{12} + \frac{x^6}{45} + x^6 \varepsilon_1(x) \quad \text{avec} \quad \lim_{x \to 0} \varepsilon_1(x) = 0.$$

Nous en déduisons le D.L. de $\ln(\cos(x)) = -\int_0^x \tan(t) dt$:

$$\ln(\cos(x)) = -\frac{x^2}{2} - \frac{x^4}{12} - \frac{x^6}{45} + x^6 \varepsilon_2(x)$$
 avec $\lim_{x \to 0} \varepsilon_2(x) = 0$.

 $\text{Autre m\'ethode}: \ln(\cos(x)) = \ln(1+(\cos(x)-1) \text{ et on voit alors cette fonction comme une fonction compos\'ee}.$

Exemple 2 : Soit f la fonction définie par $f(x) = \ln(1+x)$; la fonction f est dérivable au voisinage de 0 et $f'(x) = \frac{1}{1+x}$. Nous avons

$$\frac{1}{1+x} = \sum_{k=0}^{n-1} (-1)^k x^k + x^{n-1} \varepsilon(x) \quad \text{avec} \quad \lim_{x \to 0} \varepsilon(x) = 0.$$

La Proposition 9 assure que

$$\ln(1+x) = \sum_{k=1}^{n} (-1)^{k-1} \frac{x^k}{k} + x^n \tilde{\varepsilon}(x) \quad \text{avec} \quad \lim_{x \to 0} \tilde{\varepsilon}(x) = 0 .$$

Exemple 3 : Soit f la fonction définie par $f(x) = \ln(1-x)$; la fonction f est dérivable au voisinage de 0 et $f'(x) = -\frac{1}{1-x}$. Nous avons

$$-\frac{1}{1-x} = -\sum_{k=0}^{n-1} x^k + x^{n-1} \varepsilon(x) \quad \text{avec} \quad \lim_{x \to 0} \varepsilon(x) = 0.$$

D'après la Proposition 9

$$\ln(1-x) = -\sum_{k=1}^{n} \frac{x^k}{k} + x^n \tilde{\varepsilon}(x) \text{ avec } \lim_{x \to 0} \tilde{\varepsilon}(x) = 0.$$

Exemple 4 : La fonction $f:]-1, 1[\longrightarrow \mathbb{R}, x \longmapsto f(x) = \frac{1}{1+x}$ admet un développement limité à l'ordre nen 0 de partie régulière

$$1 - x + x^2 + \ldots + (-1)^n x^n$$
.

Sa dérivée $f':]-1, 1[\longrightarrow \mathbb{R}, x \longmapsto f'(x) = -\frac{1}{(1+x)^2}$ est \mathcal{C}^{∞} sur]-1, 1[donc f' admet des développements limités à tout ordre en 0. Par conséquent la partie régulière du développement limité de f' à l'ordre n-1 en 0 est

$$-1 + 2x + \ldots + (-1)^n nx^{n-1}$$
.

Utilisation des développements limités

4.4.1 Pour le calcul de limites

Lemme 2 Soient λ et μ deux réels non nuls. Soient ℓ , m dans \mathbb{N} et soit $a \in \mathbb{R}$. Considérons

$$h: \mathbb{R} \setminus \{a\} \longrightarrow \mathbb{R}, \quad , \quad x \longmapsto h(x) = \frac{\lambda(x-a)^{\ell}}{\mu(x-a)^m} = \frac{\lambda}{\mu}(x-a)^{\ell-m}$$

Alors

si
$$\frac{\lambda}{\mu} > 0$$
, alors, $\lim_{x \to a} h(x) = +\infty$; si $\frac{\lambda}{\mu} < 0$, alors, $\lim_{x \to a} h(x) = -\infty$;

 \diamond si $\ell < m$ et $\ell - m$ est impair, alors

$$\operatorname{si} \ \frac{\lambda}{\mu} > 0, \operatorname{alors} \lim_{\substack{x \to a \\ x > a}} h(x) = +\infty \ \operatorname{et} \ \lim_{\substack{x \to a \\ x < a}} h(x) = -\infty \ ; \ \operatorname{si} \ \frac{\lambda}{\mu} < 0, \operatorname{alors} \lim_{\substack{x \to a \\ x > a}} h(x) = -\infty \ \operatorname{et} \ \lim_{\substack{x \to a \\ x < a}} h(x) = +\infty$$

Soient $\alpha < \beta$ deux réels. Posons $I =]\alpha, \beta[$. Soient $a \in I$, $f : I \to \mathbb{R}$ et $g : I \to \mathbb{R}$. Supposons que f et g ont comme D.L. en a à l'ordre n

$$f(x) = a_{\ell}(x-a)^{\ell} + a_{\ell+1}(x-a)^{\ell+1} + \dots + a_n(x-a)^n + (x-a)^n \varepsilon_1(x)$$

$$g(x) = b_m(x-a)^m + b_{m+1}(x-a)^{m+1} + \dots + b_n(x-a)^n + (x-a)^n \varepsilon_2(x)$$

avec $\lim_{x\to a} \varepsilon_1(x) = 0$ et $\lim_{x\to a} \varepsilon_2(x) = 0$. Nous supposons $a_\ell \neq 0$ et $b_m \neq 0$.

Proposition 10 Il existe r > 0 tel que $]a - r, a + r[\subset I$ et tel que g ne s'annule pas sur $]a - r, a + r[\smallsetminus \{a\}]$. La fonction

$$\frac{f}{g}:]a-r, a+r[\setminus \{a\} \longrightarrow \mathbb{R}, x \longmapsto \frac{f(x)}{g(x)}$$

est alors bien définie et $\frac{f(x)}{g(x)}$ et $\frac{a_{\ell}(x-a)^{\ell}}{b_m(x-a)^m}$ ont même limite quand x tend vers a. Ces limites sont donnés par le Lemme 2.

Preuve: (Idée de la démonstration) Nous avons

$$f(x) = a_{\ell}(x-a)^{\ell} \left(1 + \frac{a_{\ell+1}}{a_{\ell}}(x-a) + \frac{a_{\ell+2}}{a_{\ell}}(x-a)^{2} + \dots + \frac{a_{n}}{a_{\ell}}(x-a)^{n-\ell} + (x-a)^{n-\ell} \frac{\varepsilon_{1}(x)}{a_{\ell}} \right)$$

Ainsi f s'écrit :

$$f(x) = a_{\ell}(x - a)^{\ell}u(x)$$

avec $u: I \to \mathbb{R}$ et $\lim_{x \to a} u(x) = 1$.

De même g s'écrit :

$$g(x) = b_m(x - a)^m v(x)$$

avec $v \colon I \to \mathbb{R}$ et $\lim_{x \to a} v(x) = 1$. La proposition en résulte.

Exemple: Considérons la fonction:

$$h:]-1, +\infty[\setminus\{0\} \longrightarrow \mathbb{R} \quad , \quad x \longmapsto h(x) = \frac{\sqrt{1+x} - \sqrt[3]{1 + \frac{3}{2}x}}{x^2 + x^3} .$$

Déterminons $\lim_{x\to 0} h(x)$.

Rappelons que pour α réel

$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2}x^2 + x^2\varepsilon(x) \quad avec \lim_{x\to 0} \varepsilon(x) = 0.$$

En particulier

$$\sqrt{1+x} = (1+x)^{1/2} = 1 + \frac{1}{2}x - \frac{1}{8}x^2 + x^2\varepsilon(x)$$

$$\sqrt[3]{1+x} = (1+x)^{1/3} = 1 + \frac{1}{3}x - \frac{1}{9}x^2 + x^2\varepsilon(x)$$

$$\sqrt[3]{1+\frac{3}{2}x} = 1 + \frac{1}{3}\left(\frac{3}{2}x\right) - \frac{1}{9}\left(\frac{3}{2}x\right)^2 + x^2\varepsilon(x)$$

$$= 1 + \frac{1}{2}x - \frac{1}{4}x^2 + x^2\varepsilon(x)$$

avec dans chacun des cas $\lim_{x\to 0} \varepsilon(x) = 0$. Le numérateur de h sécrit alors :

$$\sqrt{1+x} - \sqrt[3]{1+\frac{3}{2}x} = \frac{1}{8}x^2 + x^2\varepsilon(x)$$
 avec $\lim_{x\to 0} \varepsilon(x) = 0$.

Le dénominateur de h sécrit alors :

$$x^2 + x^3 = x^2 + x^2 \varepsilon(x)$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.

La Proposition 10 assure que

$$\lim_{x \to 0} h(x) = \lim_{x \to 0} \frac{\frac{1}{8}x^2}{x^2} = \frac{1}{8}.$$

Exemple : Considérons la fonction f définie pour x > 0 par

$$f(x) = \sqrt[3]{x^3 + 1} - \sqrt{x^2 + x}$$

Déterminons $\lim_{x\to+\infty} f(x)$.

Nous avons:

$$f(x) = \sqrt[3]{x^3 + 1} - \sqrt{x^2 + x} = \sqrt[3]{x^3 \left(1 + \frac{1}{x^3}\right)} - \sqrt{x^2 \left(1 + \frac{1}{x}\right)}$$

$$= x\sqrt[3]{1 + \frac{1}{x^3}} - x\sqrt{1 + \frac{1}{x}}$$

$$= x\left(1 + \frac{1}{x^3}\right)^{1/3} - x\left(1 + \frac{1}{x}\right)^{1/2}$$

$$= x\left(\left(1 + \frac{1}{x^3}\right)^{1/3} - \left(1 + \frac{1}{x}\right)^{1/2}\right)$$

Or, nous avons pour h > -1:

$$\sqrt[3]{1+h^3} = 1 + \frac{1}{3}h^3 + \varepsilon_1(h)h^3$$
$$\sqrt{1+h} = 1 + \frac{1}{2}h - \frac{1}{8}h^2\varepsilon_2(h)h^2$$

avec $\lim_{h\to 0} \varepsilon_1(h) = 0$ et $\lim_{h\to 0} \varepsilon_2(h) = 0$. Nous avons donc :

$$\sqrt[3]{1+h^3} - \sqrt{1+h} = -\frac{1}{2}h + \frac{1}{8}h^2 + \varepsilon_3(h)h^2$$

avec $\lim_{h\to 0} \varepsilon_3(h) = 0$. Il en résulte pour x>0 assez grand :

$$f(x) = x(-\frac{1}{2x} + \frac{1}{8x^2} + \varepsilon_3(\frac{1}{x})\frac{1}{x^2}) = -\frac{1}{2} + \frac{1}{8x} + \varepsilon_3(\frac{1}{x})\frac{1}{x}$$

avec $\lim_{x \to +\infty} \varepsilon_3(\frac{1}{x}) = 0$. Nous en déduisons $\lim_{x \to +\infty} f(x) = -\frac{1}{2}$.

Exemple : Calculons la limite de la fonction $x \mapsto \frac{\sin(3x) - \sin(2x)}{x}$ lorsque x tend vers 0. Nous utilisons le développement limité à l'ordre 2 des fonctions $\sin(3x)$ et $\sin(2x)$: nous avons $\sin(3x) = 3x + x^2\varepsilon(x)$ et $\sin(2x) = 2x + x^2\eta(x)$ où ε et η sont deux fonctions qui tendent vers 0 lorsque x tend vers 0. Nous obtenons alors pour tout x réel non nul

$$\frac{\sin(3x) - \sin(2x)}{x} = \frac{3x + x^2 \varepsilon(x) - 2x - x^2 \eta(x)}{x} = 1 + x \left(\varepsilon(x) - \eta(x)\right).$$

Nous pouvons ainsi conclure : $\lim_{x\to 0} \frac{\sin(3x) - \sin(2x)}{x} = 1$.

4.4.2 Pour l'étude des propriétés locales de la représentation graphique d'une fonction Position de deux courbes représentatives

Soit $\alpha < \beta$ deux réels et I l'intervalle $]\alpha, \beta[$. Considérons une application $f: I \longrightarrow \mathbb{R}$. Considérons \mathcal{P} un plan géométrique muni d'un repère orthonormée O, \vec{i}, \vec{j} . Nous identifions un couple de réels (x, y) avec le point M de coordonnées (x, y). Nous désignons par C_f la courbe représentative de f:

$$C_f = \{(x, y) \text{ avec } x \in I \text{ et } y = f(x) \}$$
.

La courbe représentative de f définit deux sous ensembles du plan. Les points C_f^+ au-dessus du graphe de f définis par :

$$C_f^+ = \{(x, y) \text{ tels que } x \in I \text{ et } y \ge f(x) \}$$
.

Les points C_f^- au-dessus du graphe de f définis par :

$$C_f^- = \{(x, y) \text{ tels que } x \in I \text{ et } y \ge f(x) \}$$
.

Soit g une deuxième application $g: I \longrightarrow \mathbb{R}$. Nous dirons que C_g est au-dessus de C_f si $C_g \subset C_f^+$ et nous C_g est en-dessous de C_f si $C_g \subset C_f^-$. Si J est un intervalle contenu dans I, nous dirons que C_g est au-dessus de C_f sur J si

$$\{(x,y) \text{ avec } x \in J \text{ et } y \ge g(x)\} \subset C_f^+$$
.

Nous dirons que C_q est en-dessous de C_f sur J si

$$\{(x,y) \text{ avec } x \in J \text{ et } y \ge g(x)\} \subset C_f^-$$
.

Remarquons que demander que C_g soit au-dessus de C_f sur J équivaut à demander pour tout $x \in J : g(x) \ge f(x)$ ou encore que $g(x) - f(x) \ge 0$. De même demander que C_g soit en-dessous de C_f sur J équivaut à demander pour tout $x \in J : g(x) \le f(x)$ ou encore que $g(x) - f(x) \le 0$.

Faisons quelques remarques sur les sécantes d'une courbe représentative et les tangentes en un point à une courbe représentative. Soit $a \neq b \in I$; A = (a, f(a)) et B = (b, f(b)).

i) La droite AB est appelée sécante à C_f . Son équation est

$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
 (AB).

ii) Supposons f dérivable en a. Lorsque b tend vers a, B tend vers A et la droite AB tend vers une droite T d'équation :

$$y = f(a) + f'(a)(x - a) \quad (T)$$

appelée tangente en a à C_f .

Notons que y = f(a) + k(x - a) est l'équation d'une droite D passant par A. Cette droite est aussi la courbe représentative de la fonction $\mathbb{R} \longrightarrow \mathbb{R}$, $x \mapsto f(a) + k(x - a)$. Ainsi, dire que C_f est au-dessus de sa tangente en a sur J signifie que pour tout $x \in J$ on ait : $f(x) \ge f(a) + f'(a)(x - a)$. Et dire que C_f est en-dessus de sa tangente en a sur J signifie que pour tout $x \in J$ on ait : $f(x) \le f(a) + f'(a)(x - a)$.

Position locale relative de deux courbes locales représentative :

Soient $\alpha < \beta$ deux réels. Posons $I =]\alpha, \beta[$. Soient $a \in I$ et $n \in \mathbb{N}$.

Lemme 3 Soit $h: I \to \mathbb{R}$ une fonction admettant comme D.L. en a d'ordre n

$$h(x) = a_p(x-a)^p + a_{p+1}(x-a)^{p+1} + \dots + a_n(x-a)^n + (x-a)^n \varepsilon(x)$$

avec $a_p \neq 0$ et $\lim_{x \to a} \varepsilon(x) = 0$. Il existe alors r > 0 tel que $]a - r, a + r[\subset I$ et h est du signe de $a_p(x - a)^p$ sur]a - r, a + r[.

Preuve : À partir de

$$h(x) = a_p(x-a)^p + a_{p+1}(x-a)^{p+1} + \ldots + a_n(x-a)^n + (x-a)^n \varepsilon(x)$$

nous obtenons

$$h(x) = (x - a)^{p} \left(\underbrace{a_{p} + a_{p+1}(x - a) + \dots + a_{n}(x - a)^{n-p} + (x - a)^{n-p} \varepsilon(x)}_{u(x)} \right)$$

Notons que $\lim_{x\to a} u(x) = a_p$. Par définition de la limite nous obtenons l'existence de r > 0 tel que $]a-r, a+r[\subset I$ et h est du signe de $a_p(x-a)^p$ sur]a-r, a+r[. Ainsi h est du signe de $a_p(x-a)^p$ sur]a-r, a+r[.

Proposition 11 Soient $f: I \to \mathbb{R}$ et $g: I \to \mathbb{R}$ deux fonctions. Supposons que f et g admettent comme D.L. en a d'ordre n

$$f(x) = a_0 + a_1(x-a) + a_2(x-a)^2 + \dots + a_n(x-a)^n + (x-a)^n \varepsilon_1(x)$$

$$g(x) = b_0 + b_1(x-a) + b_2(x-a)^2 + \dots + b_n(x-a)^n + (x-a)^n \varepsilon_2(x)$$

avec $\lim_{x\to a} \varepsilon_1(x) = \lim_{x\to a} \varepsilon_2(x) = 0$. Supposons enfin que

$$a_0 = b_0$$
, , $a_1 = b_1$, , $a_2 = b_2$, , ... , $a_{p-1} = b_{p-1}$, $et \ a_p \neq b_p$ avec $p \leq n$

en particulier $a_p - b_p \neq 0$. Alors il existe r > 0 avec $|a - r, a + r| \subset I$ tel que si

- \diamond p est pair et $a_p b_p > 0$, nous ayons la courbe représentative C_f de f au-dessus de la courbe représentative C_a de q sur |a r, a + r|;
- \diamond p est pair et $a_p b_p < 0$, nous ayons la courbe représentative C_f de f au-dessous de la courbe représentative C_q de g sur |a r, a + r|;
- \diamond p est impair et $a_p b_p > 0$, la courbe représentative C_f de f au-dessus de la courbe représentative C_g de g sur [a, a + r[et la courbe représentative C_f de f au-dessous de la courbe représentative C_g de g sur [a r, a];
- \diamond p est impair et $a_p b_p < 0$, nous ayons la courbe représentative C_f de f au-dessous de la courbe représentative C_g de g sur [a, a + r[et la courbe représentative C_f de f au-dessus de la courbe représentative C_q de g sur [a r, a];

Remarque 12 Supposons que $n \ge 2$ et que f(a) = g(a). Si C_f est soit au-dessus de C_g sur]a - r, a + r[, soit au-dessous de C_g sur]a - r, a + r[, alors C_f et C_g ont même tangente en a.

Preuve : Supposons donc que $n \ge 2$ et f(a) = g(a) autrement dit $a_0 = b_0$. De plus $a_1 = f'(a)$ et $b_1 = g'(a)$. Si $f'(a) \ne g'(a)$, alors la Proposition 11 aboutit à une contradiction. Comme l'équation des tangentes en a à C_f et C_g sont

$$y = f(a) + f'(a)(x - a)$$
 et $y = g(a) + g'(a)(x - a)$

nous obtenons que C_f et C_q ont même tangente en a.

Proposition 12 Supposons que f admette un D.L. en a d'ordre $n \ge 2$. Alors f est dérivable en a et le D.L. de f en a d'ordre 1 est

$$f(x) = f(a) + f'(a)(x - a) + (x - a)\varepsilon_1(x)$$

avec $\lim_{x\to a} \varepsilon_1(x) = 0$.

Supposons que f admette comme D.L. en a à l'ordre $n \geq 2$

$$f(x) = f(a) + f'(a)(x - a) + a_p(x - a)^p + \dots + a_n(x - a)^n + (x - a)^n \varepsilon(x)$$

avec $\lim_{x\to a} \varepsilon(x) = 0$ et supposons $a_p \neq 0$.

Alors il existe r > 0 avec $|a - r, a + r| \subset I$ tel que si

- $\diamond p$ est pair et $a_p > 0$, alors C_f est au-dessus de la tangente en $a \grave{a} C_f$ sur]a r, a + r[;
- $\diamond p$ est pair et $a_p < 0$, alors C_f est au-dessous de la tangente en $a \grave{a} C_f$ sur]a r, a + r[;
- \Leftrightarrow p est impair et $a_p > 0$, alors C_f est au-dessus de la tangente en a à C_f sur [a, a + r[et au-dessous sur |a r, a|;
- \Leftrightarrow p est impair et $a_p < 0$, alors C_f est au-dessous de la tangente en a à C_f sur [a, a + r[et au-dessus sur]a r, a];

Lorsque p est impair, nous disons que a est un point d'inflexion de f.

Preuve : C'est une conséquence directe de la Proposition 11 si on se souvient que la tangente à C_f en 0 a pour équation

$$y = f(a) + f'(a)(x - a)$$

et est donc la courbe représentative de

$$\mathbb{R} \longrightarrow \mathbb{R}$$
 , $x \longmapsto f(a) + f'(a)(x - a)$.

Exemple: Considérons

$$f: \mathbb{R} \to \mathbb{R} \longrightarrow \mathbb{R}$$
 , $x \longmapsto f(x) = \exp(x)$.

La fonction f est dérivable à tout ordre et f(0) = f'(0) = 1. La tangente à C_f en 0 a donc pour équation y = 1 + x. De plus

$$\exp(x) = 1 + x + \frac{x^2}{2} + x^2 \varepsilon(x)$$

avec $\lim_{x\to 0} \varepsilon(x) = 0$. Il en résulte que $\exp(x) - 1 - x \ge 0$ sur un intervalle]-r,r[avec r petit. Par conséquent sur cet intervalle C_f est au dessus de sa tangente.

Exemple: Considérons la fonction

$$f: \mathbb{R} \longrightarrow \mathbb{R}$$
 , $x \longmapsto f(x) = 1 - 2x - \sin(x)$.

La fonction f est dérivable à tout ordre au voisinage de x=0. Nous avons f(0)=1 et

$$f(x) = 1 - 2x - \left(x - \frac{x^3}{3!} + x^3 \varepsilon(x)\right) = 1 - 3x + \frac{x^3}{3!} - x^3 \varepsilon(x)$$

avec $\lim_{r\to 0} \varepsilon(x) = 0$. Ainsi il existe r>0 tels que

- $\Rightarrow f(x) 1 + 3x \ge 0 \text{ sur } [0, r[;$
- $\Rightarrow f(x) 1 + 3x \le 0 \text{ sur }] r, 0].$

L'équation de la tangente en x = 0 à C_f est y = 1 - 3x.

Par suite

- $\diamond C_f$ est au-dessus de sa tangente en x = 0 sur [0, r[;
- $\diamond C_f$ est au-dessous de sa tangente en x=0 sur]-r,0].

En x = 0, f a un un point d'inflexion de f.

Pour l'étude des branches infinies

Soit f une fonction de \mathbb{R} dans \mathbb{R} admettant une limite infinie au point $+\infty$ (resp. $-\infty$) de $\mathbb{R} \cup \{-\infty, \infty\}$. Les développements limités peuvent nous aider aide à la détermination des asymptotes de la courbe \mathcal{C} d'équation y = f(x).

Exemple: Considérons $f(x) = \sqrt[4]{x^4 + x^2} - \sqrt[3]{x^3 + x^2}$. La fonction f(x) est définie pour x > 0.

Etudions la limite de f(x) aun x tend vers $+\infty$. Posons $g(x) = \sqrt[4]{x^4 + x^2}$ et $h(x) = \sqrt[3]{x^3 + x^2}$. Nous avons $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} g(x) = +\infty$. De sorte qu'il faut travailler un peu plus pour avoir le comportement de f(x)

pour x > 0 grand. Dans $x^4 + x^2$ pour x > 0 grand, c est x^4 le terme le plus grand et dans $x^3 + x^2$ c'est x^3 . Mettons ces termes dominants en facteur pour x > 0 grand :

$$f(x) = \sqrt[4]{x^4 + x^2} - \sqrt[3]{x^3 + x^2} = \sqrt[4]{x^4 (1 + \frac{1}{x^2})} - \sqrt[3]{x^3 (1 + \frac{1}{x})} = x(\sqrt[4]{1 + \frac{1}{x^2}} - \sqrt[3]{(1 + \frac{1}{x})}).$$

Nous avons pour $h \in]-1,1[$:

$$\sqrt[4]{1+h^2} = 1 + \frac{1}{4}h^2 + \varepsilon(h)h^2$$

$$\sqrt[3]{1+h} = 1 + \frac{1}{3}h - \frac{1}{9}h\frac{1}{3}h^2 + \varepsilon(h)h^2$$

avec $\lim_{h\to 0} \varepsilon(h) = 0$. Il en résulte :

$$\sqrt[4]{1+h^2} - \sqrt[3]{1+h} = -\frac{1}{3}h + \frac{13}{36}h^2\varepsilon(h)h^2$$

avec $\lim_{h\to 0} \varepsilon(h) = 0$. Donc pour x > 0 grand :

$$f(x) = x(\sqrt[4]{1 + \frac{1}{x^2}} - \sqrt[3]{(1 + \frac{1}{x})} = x(-\frac{1}{3x} + \frac{13}{36x^2} + \varepsilon(\frac{1}{x})\frac{1}{x^2})$$

Ainsi

$$f(x) = -\frac{1}{3} + \frac{13}{36x} + \varepsilon(\frac{1}{x})\frac{1}{x}$$

Nous obtenons : $\lim_{x\to +\infty} f(x) = -\frac{1}{3}$ Cela montre que C_f est asymptote à la droite horizontale d'équation $y=-\frac{1}{3}$ en $x=+\infty$.

Prolongement de fonctions :

Les D.L peuvent permettre de de prolonger une fonction qui n'est pas définie au point a.

Exemple : Donner un prolongement sur \mathbb{R} de la fonction suivante :

$$f: \mathbb{R} - \{0\} \longrightarrow \mathbb{R}$$
 , $x \longmapsto f(x) = \frac{1}{\exp(x) - 1} - \frac{1}{x}$

Pour tout $x \neq 0$:

$$f(x) = \frac{1 + x - \exp(x)}{x(\exp(x) - 1)}$$

Pour tout x réel :

$$\exp(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + x^3 \varepsilon_1(x)$$
$$\exp(x) = 1 + x + \frac{x^2}{2} + x^2 \varepsilon_2(x)$$

Nous obtenons pour tout x réel :

$$1 + x - \exp(x) = -\frac{x^2}{2} - \frac{x^3}{6} - x^3 \varepsilon_1(x) = x^2 \left(-\frac{1}{2} - \frac{x}{6} - x \varepsilon_1(x)\right)$$

$$x(\exp(x) - 1) = x(x + \frac{x^2}{2} + x^2 \varepsilon_2(x)) = x^2(1 + \frac{x}{2} + x\varepsilon_2(x))$$

Posons pour tout x réel : $u(x) = -\frac{1}{2} - \frac{x}{6} - x \,\varepsilon_1(x)$ et $v(x) = 1 + \frac{x}{2} + x \,\varepsilon_2(x)$. Ceux sont deux fonctions définies sur \mathbb{R} . Nous avons v(0) = 1 et la fonction v ne s'annule pas. Ces deux fonctions admettent des D.L d'ordre 1 en 0. En fait comme $1 + x - \exp(x)$ et $x(\exp(x) - 1)$, ces fonctions u et v admettent des D.L. de tout ordre en 0. La fonction :

$$h = \frac{u}{v} : \mathbb{R} \longrightarrow \mathbb{R} \quad , \quad x \longmapsto h(x) = \frac{u(x)}{v(x)}$$

admet dont un D.L de tout ordre en 0. Nous avons :

$$h(x) = \frac{x^2 u(x)}{x^2 v(x)} = \frac{u(x)}{v(x)} = \frac{-\frac{1}{2} - \frac{x}{6} - x \,\varepsilon_1(x)}{1 + \frac{x}{2} + x \,\varepsilon_2(x)} \quad \text{pour } x \neq 0 \quad , \quad h(0) = -\frac{1}{2} .$$

Ainsi f se prolonge donc par h en 0. La division en puissance croissante de $-\frac{1}{2} - \frac{x}{6}$ par $1 + \frac{x}{2}$ s'écrit :

$$-\frac{1}{2} - \frac{x}{6} = \left(-\frac{1}{2} + \frac{x}{12}\right)\left(1 + \frac{x}{2}\right) - \frac{x^2}{24}.$$

Le D.L. de h d d'ordre 1 en 0 est donc :

$$h(x) = -\frac{1}{2} + \frac{x}{12} + \varepsilon(x)x$$
 avec $\lim_{x \to 0} \varepsilon(x) = 0$.

Nous avons vu que nous pouvons en déduire que h est dérivable en 0 et que $h'(0) = \frac{1}{12}$. Question pour un champion : montrer que h est infiniment dérivable ?