Cours de Fondements Mathématiques II

Espaces Vectoriels . TD 1

Exercice 1 – Soit E un R-espace vectoriel et w un vecteur fixé de E.

1) Déterminer $u \in E$ en fonction de w tel que :

$$2u - \frac{1}{2}w = 3w - 7u \; .$$

2) Déterminer de même $u, v \in E$ tels que :

$$\begin{cases} 3u - v = 4w \\ u - 2v = -w \end{cases}$$

Exercice 2 – Soit E un Q-espace vectoriel, et $x, u \in E$ et $\lambda \in \mathbb{Q}$. Soit :

$$v = (\lambda - 1)(x + 5u) - 7u - (2x - u).$$

- 1) Exprimer v comme une combinaison linéaire de x, u.
- 2) Nous supposons u non nul fixé, déterminer en fonction de λ et u les vecteurs x tels que v=0.

Exercice 3 – Démonstrations de quelques résultats généraux :

- 1) Montrer que si u_1, u_2, \ldots, u_p est une famille libre d'un espace vectoriel E, toute sous-famille de u_1, u_2, \ldots, u_p est une famille libre.
- 2) Montrer que si v_1, v_2, \ldots, v_p est une famille génératrice d'un espace vectoriel E, toute famille finie de vecteurs de E contenant v_1, v_2, \ldots, v_p est une famille génératrice de E.
- 3) Soit E un K-espace vectoriel et u_1, u_2, \ldots, u_p une famille libre de E. Montrer que :

$$v \notin \langle u_1, u_2, \dots, u_p \rangle \iff (v, u_1, u_2, \dots, u_p)$$
 famille libre de E .

4) Montrer que si (u_1, u_2, u_3) est une base de E, alors (u_3, u_2, u_1) est une base de E.

Exercice 4 – Soit E un \mathbb{R} -espace vectoriel et $\mathcal{B} = (e_1, e_2, e_3)$ une base de E Soit u de coordonnées (-1,0,2), v de coordonnées (2,1,0) et w de coordonnées (2,1,-1) dans la base \mathcal{B} . 1) Calculer les coordonnées des vecteurs dans la base $\mathcal{B} = (e_1, e_2, e_3)$:

$$2u - v - 2w$$
 et $3(u - v) + 3(v - w)$.

2) Déterminer les coordonnées dans la base $\mathcal B$ des vecteurs x satisfaisant la relation :

$$2u - x = v + x .$$

Exercice 5 – Soit $u=(1,0), v=(1,2) \in \mathbf{R}^2$. Montrer en revenant aux définitions de famille libre et génératrice que la famille (u,v) est une famille libre et génératrice du \mathbf{R} -espace vectoriel \mathbf{R}^2 des couples de réels. Quellles sont les coordonnées du couple $(\sqrt{2},\pi)$ dans cette base.

Exercice 6 – Soit $u=(1,0,2), v=(1,3,1) \in \mathbf{R}^3$. Et $F=\mathrm{Vect}(u,v)$ l'ensemble des combinaisons linéaires des vecteurs u et v.

- 1) Expliquer pourquoi F est un sous-espace vectoriel de \mathbb{R}^3 . Montrer que famille (u, v) est une base de F. Montrer que $e = (3, 3, 5) \in F$. Quelles sont les coordonnées de e dans la base (u, v) de F.
- 2) Montrer que la famille (u, v) est libre et non génératrice. Exhiber un vecteur w de \mathbf{R}^3 telle que la famille (u, v, w) woit une base de \mathbf{R}^3 . Quels sont tous les vecteurs w qui conviennent?

Exercice 7 – Nous considérons les systèmes linéaires :

(1)
$$\begin{cases} x-y+z+t=0 \\ z-2z+4t=0 \end{cases}$$
; (2) $\begin{cases} x-y+z+t=0 \\ x+2y-2z+4t=0 \end{cases}$; (3) $\begin{cases} x-y+z+t=0 \\ x+2y-2z+4t=0 \end{cases}$

- 1) Pourquoi les ensembles de solutions $S_1, S_2, S_3 = S_1 \cap S_2$ de ces trois systèmes sont-ils des sous-espaces vectoriels de \mathbf{R}^4 ?
- 2) Donner une base de ces trois sous-espaces vectoriels (On suivra l'algorithme de résolution des systèmes linéaires).
- 3) Vérfier que $u=(-4,0,2,2)\in S_1\cap S_2$. Déterminer les coordonnées de u dans ces trois bases.

Exercice 8 – Soit $u=(1,1), v=(2,-1), w=(1,3) \in \mathbf{R}^2$. Nous appelons relation entre u,v,w, tout $(x,y,z) \in \mathbf{R}^3$ tel que :

$$xu + yv + zw = 0.$$

- 1) Montrer que l'ensemble des relations entre u, v, w est un sous-espace vectoriel de \mathbb{R}^3 .
- 2) Déterminer une base de ce sous-espace.
- 3) En déduire par exemple l'expréssion de w comme combinaison linéaire de (u, v).

Exercice 9 – Soit $M_2(K)$ le **K**-espace vectoriel des matrices carrées de taille 2.

1) Montrer que la famille $\mathcal{B} = \{E_{1,1}, E_{1,2}, E_{2,1}, E_{2,2}\}$ où

$$E_{1,1} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
, $E_{1,2} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, $E_{2,1} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $E_{2,2} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$

est une base de $M_2(K)$.

2) Soit $G=\{\begin{pmatrix}a&b\\c&d\end{pmatrix}\in M_2(K)\;;\;a+b+c+d=0\}$. Montrer que G est un sous-espace vectoriel de $M_2(K)$. Donner une base de G.