Feuille d'exercices n° 3 : Groupe des permutations

Exercice 1 Exprimer comme produit de cycles disjoints :

- 1. $(1\ 2\ 3)(4\ 5)(1\ 6\ 7\ 8\ 9)(1\ 5)$;
- $2. (1\ 2)(1\ 2\ 3)(1\ 2).$

Quelle est la signature de ces permutations?

Solution 1

1. Posons $\sigma_1 = (1\ 2\ 3)(4\ 5)(1\ 6\ 7\ 8\ 9)(1\ 5)$. Explicitons σ_1 :

 $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$

5 2 3 4 1 6 7 8 9

5 2 3 4 6 7 8 9 1

4 2 3 5 6 7 8 9 1

4 3 1 5 6 7 8 9 2

Donc $\sigma_1 = (4 \ 3 \ 1 \ 5 \ 6 \ 7 \ 8 \ 9 \ 2).$

C'est une permutation paire, de signature 1; en effet la signature d'un cycle d'ordre p est $(-1)^{p-1}$.

2. Posons $\sigma_2 = (1\ 2)(1\ 2\ 3)(1\ 2)$. Explicitons σ_2 :

1 2 3

2 1 3

3 2 1

3 1 2

Ainsi $\sigma_2 = (3 \ 1 \ 2)$.

C'est une permutation paire, de signature 1; en effet la signature d'un cycle d'ordre p est $(-1)^{p-1}$.

Exercice 2 Calculer aba^{-1} pour

- 1. $a = (1\ 3\ 5)(1\ 2), b = (1\ 5\ 7\ 9);$
- 2. a = (579), b = (123).

Solution 2

1. Calcul de aba^{-1} pour $a = (1\ 3\ 5)(1\ 2), b = (1\ 5\ 7\ 9).$ Explicitons a:

 $1\ 2\ 3\ 4\ 5\ 6\ 7\ 8\ 9$

 $2\ 1\ 3\ 4\ 5\ 6\ 7\ 8\ 9$

 $2\ 3\ 5\ 4\ 1\ 6\ 7\ 8\ 9$

autrement dit $a = (1 \ 2 \ 3 \ 5)$. Il s'en suit que

1 2 3 4 5 6 7 8 9

 $5\ 1\ 2\ 4\ 3\ 6\ 7\ 8\ 9$

Finalement nous obtenons

2. Calcul de aba^{-1} pour $a=(5\ 7\ 9),\,b=(1\ 2\ 3).$ Les cycles a et b sont à supports disjoints donc commutent. Ainsi $aba^{-1}=aa^{-1}b=b,$ autrement dit $aba^{-1}=b.$

Exercice 3 Déterminer la parité des permutations suivantes et les écrire comme produits de transpositions :

$$\sigma_1 = (1\ 3\ 5)(5\ 4\ 3\ 2)(5\ 6\ 7\ 8),$$
 $\sigma_2 = (1\ 2)(2\ 4)(1\ 7)(7\ 6\ 8).$

Solution 3 L'application signature est un morphisme de S_8 dans le groupe multiplicatif $\{-1, 1\}$. La permutation σ_1 est le produit d'un cycle pair avec deux cycles impairs, elle est donc paire. La permutation σ_2 est le produit de 3 cycles impairs et d'un cycle pair, elle est donc impaire.

Autre méthode:

$$\sigma_1 = (3 \ 5)(5 \ 1)(2 \ 3)(4 \ 2)(2 \ 5)(7 \ 8)(6 \ 8)(5 \ 8)$$

donc $sgn(\sigma_1) = (-1)^8 = 1$ et

$$\sigma_2 = (1 \ 2)(2 \ 4)(1 \ 7)(6 \ 8)(7 \ 8)$$

donc $sgn(\sigma_1) = (-1)^5 = -1$.

Exercice 4 Soit σ la permutation de $\{1, 2, ..., 12\}$ définie par

Calculer σ^{2000} .

Solution 4 Posons $\sigma_1 = (1 \ 10 \ 5 \ 7 \ 2 \ 9 \ 12), \ \sigma_2 = (3 \ 8 \ 6) \ \text{et} \ \sigma_3 = (4 \ 11).$

Ces trois permutations sont à supports disjoints deux à deux donc commutent. Il en résulte que $\sigma_1^{2000} = \sigma_1^{2000} \sigma_2^{2000} \sigma_3^{2000}$.

Par ailleurs σ_1 est d'ordre 7 et $2000 = 285 \times 7 + 5$ d'où $\sigma_1^{2000} = \sigma_1^5$.

De plus σ_2 est d'ordre 3 et $2000 = 666 \times 3 + 2$ d'où $\sigma_2^{2000} = \sigma_2^2$.

Enfin σ_3 est d'ordre 2 et $2000 = 1000 \times 2$ d'où $\sigma_3^{2000} = \text{id}$.

Par suite

$$\sigma^{2000} = \sigma_1^5 \sigma_2^2 = (1 \ 9 \ 7 \ 10 \ 12 \ 2 \ 5)(3 \ 8 \ 6)$$

Exercice 5 Soit n un entier, soit σ une permutation de $\{1, 2, ..., n\}$ et soit $(x_1 \ x_2 \ ... \ x_k)$ un cycle de S_n . Calculer $\sigma(x_1 \ x_2 \ ... \ x_k)\sigma^{-1}$.

Solution 5 Pour $1 \le i \le j$ posons $\sigma(x_i) = y_i$. Alors $\sigma^{-1}(y_i) = x_i$ et $((x_1 \ x_2 \ \dots \ x_k)\sigma^{-1})(y_i) = ((x_1 \ x_2 \ \dots \ x_k))(x_i) = x_{i+1}$ donc $\sigma(x_1 \ x_2 \ \dots \ x_k)\sigma^{-1}(y_i) = \sigma(x_{i+1}) = y_{i+1}$.

Par ailleurs si $y \notin \{y_1, y_2, \dots, y_k\}$, alors $(\sigma(x_1 \ x_2 \ \dots \ x_k)\sigma^{-1})(y) = y$.

Il en résulte que

$$\sigma(x_1 \ x_2 \ \dots \ x_k)\sigma^{-1} = (\sigma(x_1) \ \sigma(x_2) \ \dots \ \sigma(x_k))$$

Exercice 6 Dans le groupe S_7 calculer le produit

$$(4\ 5\ 6)(5\ 6\ 7)(6\ 7\ 1)(1\ 2\ 3)(2\ 3\ 4)(3\ 4\ 5).$$

Solution 6 Nous avons

Exercice 7 Soit n un entier. Construire des homomorphismes injectifs de S_n dans S_{n+1} .

Solution 7 Soit x un élément de $\{1, 2, ..., n+1\}$. Posons $E_x = \{1, 2, ..., n+1\} \setminus \{x\}$. Il existe un isomorphisme φ entre \mathcal{S}_n et \mathcal{S}_{E_x} . Le morphisme $f_x \colon \mathcal{S}_n \to \mathcal{S}_{n+1}$ défini par

$$\begin{cases} f_x(\sigma)(i) = \varphi(\sigma)(i) \text{ pour } i \in E_x \\ f_x(\sigma)(x) = x \end{cases}$$

est injectif.

Exercice 8 Montrer que si c et γ sont des n-cycles de S_n qui commutent entre eux, il existe un entier r tel que $\gamma = c^r$.

Solution 8 Soient $c = (1 \ c(1) \ c^2(1) \ \dots \ c^{n-1}(1))$ et $\gamma = (1 \ \gamma(1) \ \gamma^2(1) \ \dots \ \gamma^{n-1}(1))$ deux *n*-cycles de S_n qui commutent entre eux, *i.e.* $c\gamma = \gamma c$.

L'ensemble $\{1, 2, ..., n\}$ coïncide avec $\{1, c(1), c^2(1), ..., c^{n-1}(1)\}$. Par conséquent il existe $0 \le r \le n-1$ tel que $\gamma(1) = c^r(1)$. De plus si $i \in \{1, ..., n\}$, alors il existe $0 \le s \le n-1$ tel que $i = c^s(1)$. Il en résulte que

$$\gamma(i) = \gamma(c^{s}(1)) = c^{s}(\gamma(1)) = c^{s}(c^{r}(1)) = c^{r}(c^{s}(1)) = c^{s}(i).$$

Par suite $\gamma = c^s$.

Autre méthode : faisons agir S_n sur l'ensemble des n-cycles par conjugaison (c'est possible car les n-cycles sont dans la même orbite pour cette action). Cet ensemble est de cardinal (n-1)! En effet un n-cycle σ s'écrit $(1 \ \sigma(1) \ \sigma(2) \ \dots \ \sigma(n-1))$ et nous avons (n-1) choix pour $\sigma(1)$ puis (n-2) choix pour $\sigma(2)$ etc. Le groupe S_n agit transitivement sur cet ensemble. L'indice du stabilisateur de c pour cette action est (n-1)! et son cardinal est n. Ce stabilisateur est le centralisateur de c qui contient au moins les n puissances de c et tout n-cycle qui commute avec c est donc égal à une puissance de c.

Exercice 9 Soit $n \ge 3$ un entier. Sachant que le groupe S_n est engendré par l'ensemble des transpositions de $\{1, 2, ..., n\}$ montrer que S_n est engendré par les ensembles suivants de permutations :

- 1. $(1\ 2), \ldots, (1\ n);$
- 2. $(1\ 2), (2\ 3), \ldots, (n-1\ n);$
- $3. (1 2), (2 3 \ldots n).$

Solution 9

- 1. Notons que $(i \ j) = (i \ 1)(j \ 1)(i \ 1)$ lorsque $i \neq j$;
- 2. Soit i < j.

Si
$$j > i + 1$$
, alors

$$(i \ j) = (j-1 \ j)(i \ j-1)(j-1 \ j) \tag{1}$$

Si
$$j - 1 = i + 1$$
, alors $(i \ j) \in \langle (1 \ 2), (2 \ 3), \dots, (n - 1 \ n) \rangle$.

Sinon nous appliquons (1) en remplaçant $(i \ j)$ par $(i \ j-1)$ et nous arrivons de proche en proche au résultat.

3. Nous avons

$$(2\ 3\ \dots\ n)(1\ 2)(2\ 3\ \dots\ n)^{-1} = (1\ 3).$$

Par suite par récurrence pour i>2 nous avons

$$(1 \ i) = (2 \ 3 \ \dots \ n)^{i-2} (1 \ 2)(2 \ 3 \ \dots \ n)^{-i+2}$$

d'où le résultat (en utilisant la première question).

Exercice 10 Soit G un sous-groupe de S_4 opérant sur $\{1, 2, 3, 4\}$ par l'action induite par l'action naturelle de S_4 .

Pour i = 1, 2, 3, 4 on note \mathcal{O}_i l'orbite de i et S_i le stabilisateur de i.

Déterminer \mathcal{O}_i et S_i pour i = 1, 2, 3, 4 dans chacun des cas suivants :

- 1. $G = \langle (1\ 2\ 3) \rangle$;
- 2. $G = \langle (1\ 2\ 3\ 4) \rangle;$
- 3. $G = \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\};$
- 4. $G = \{e, (1\ 2), (1\ 2)(3\ 4), (3\ 4)\};$
- 5. $G = A_4$.

Solution 10

- 1. Supposons que $G = \langle (1 \ 2 \ 3) \rangle$.
 - Si i = 1, alors $\mathcal{O}_i = \{1, 2, 3\}$ et $S_i = \text{id}$.
 - Si i = 2, alors $\mathcal{O}_i = \{1, 2, 3\}$ et $S_i = id$.
 - Si i = 3, alors $\mathcal{O}_i = \{1, 2, 3\}$ et $S_i = id$.
 - Si i = 4, alors $\mathcal{O}_i = \{4\}$ et $S_i = G$.
- 2. Supposons que $G = \langle (1 \ 2 \ 3 \ 4) \rangle$.
 - Si i = 1, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = id$.
 - Si i = 2, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = id$.
 - Si i = 3, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = id$.
 - Si i = 4, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = id$.
- 3. Supposons que $G = \{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}.$
 - Si i = 1, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = id$.
 - Si i = 2, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = id$.
 - Si i = 3, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = id$.
 - Si i = 4, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = id$.
- 4. Supposons que $G = \{id, (12), (12)(34), (34)\}.$
 - Si i = 1, alors $\mathcal{O}_i = \{1, 2\}$ et $S_i = \{\text{id}, (3 4)\}.$
 - Si i = 2, alors $\mathcal{O}_i = \{1, 2\}$ et $S_i = \{id, (3 4)\}$.
 - Si i = 3, alors $\mathcal{O}_i = \{3, 4\}$ et $S_i = \{\text{id}, (1 2)\}.$
 - Si i = 4, alors $\mathcal{O}_i = \{3, 4\}$ et $S_i = \{\text{id}, (1 2)\}.$
- 5. Supposons que $G = A_4$.
 - Si i = 1, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = \langle (2 \ 3 \ 4) \rangle$.
 - Si i = 2, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = \langle (1 \ 3 \ 4) \rangle$.
 - Si i = 3, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = \langle (1 \ 2 \ 4) \rangle$.
 - Si i = 4, alors $\mathcal{O}_i = \{1, 2, 3, 4\}$ et $S_i = \langle (1 \ 2 \ 3) \rangle$.

Exercice 11 Établir la table de S_3 et de $\mathbb{Z}/_{6\mathbb{Z}}$.

Quels sont les sous-groupes de S_3 ?

Quels sont les sous-groupes de $\mathbb{Z}/_{6\mathbb{Z}}$?

Solution 11 La table de S_3 est

	id	(1 2)	$(1 \ 3)$	(2 3)	$(1\ 2\ 3)$	$(1 \ 3 \ 2)$
id	id	(1 2)	(1 3)	(2 3)	$(1\ 2\ 3)$	$(1\ 3\ 2)$
(1 2)	(1 2)	id	$(1\ 3\ 2)$	$(1\ 2\ 3)$	(2 3)	(1 3)
(1 3)	(1 3)	$(1\ 2\ 3)$	id	$(1 \ 3 \ 2)$	(1 2)	(23)
(2 3)	(2 3)	$(1\ 3\ 2)$	$(1\ 2\ 3)$	id	(1 3)	(1 2)
$(1\ 2\ 3)$	$(1\ 2\ 3)$	(1 3)	$(2\ 3)$	(1 2)	$(1 \ 3 \ 2)$	id
$(1 \ 3 \ 2)$	$(1\ 3\ 2)$	(2 3)	(1 2)	(1 3)	id	$(1\ 2\ 3)$

La table de $\mathbb{Z}_{6\mathbb{Z}}$ est

	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[4]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

Les sous-groupes de S_3 sont :

- un sous-groupe d'ordre 1;
- trois sous-groupes d'ordre 2 : $\langle (1 \ 2) \rangle$, $\langle (1 \ 3) \rangle$, $\langle (2 \ 3) \rangle$;
- un sous-groupe d'ordre $3: \langle (1 \ 2 \ 3) \rangle$.

Les sous-groupes de $\mathbb{Z}/_{6\mathbb{Z}}$ sont :

- un sous-groupe d'ordre 1;
- un sous-groupes d'ordre $2:\langle [3]\rangle$;
- un sous-groupes d'ordre $3:\langle [2]\rangle$.

Exercice 12

- a) Déterminer les classes de conjugaison dans S_n .
- b) Déterminer les classes de conjugaison dans A_n .

Solution 12

a) Soit $c = (a_1 \ldots a_k)$ un k-cycle de S_n . Pour tout $\sigma \in S_n$ on a

$$\sigma c \sigma^{-1} = (\sigma(a_1) \dots \sigma(a_k)).$$

Toute permutation se décompose de façon unique en produit de cycles à supports disjoints. Par suite les classes de conjugaison dans S_n sont paramétrées par les partitions de l'entier n. Rappelons qu'une partition de l'entier n est une famille finie d'entiers $m_i \ge 1$ tels que

$$m_1 \leqslant \ldots \leqslant m_r$$

$$\sum m_i = n.$$

La classe de conjugaison correspondant à une telle partition est l'ensemble des permutations dont la décomposition en cycles fait intervenir exactement m_i cycles de longueur i pour tout i.

b) Puisque \mathcal{A}_n est distingué dans \mathcal{S}_n la classe de conjugaison dans \mathcal{S}_n d'un élément de \mathcal{A}_n est contenue dans \mathcal{A}_n . Comme \mathcal{A}_n est d'indice 2 dans \mathcal{S}_n , la classe de conjugaison de σ dans \mathcal{S}_n est soit égale à la classe de conjugaison de σ dans \mathcal{A}_n , soit réunion de deux classes de conjugaison dans \mathcal{A}_n .

Montrons que nous sommes dans le premier cas si et seulement si σ admet un cycle de longueur paire dans sa décomposition ou σ admet au moins deux cycles de même longueur impaire dans sa décomposition. Supposons que σ admette un cycle c de longueur paire, pour tout $\tau \in \mathcal{S}_n$ on a $\tau \sigma \tau^{-1} = (\tau c)\sigma(\tau c)^{-1}$; les classes de conjugaison dans \mathcal{S}_n et \mathcal{A}_n coïncident. Si σ admet deux cycles

$$c = (a_1 \dots a_{2k+1})$$
 $c' = (a'_1 \dots a'_{2k+1})$

de même longueur impaire, alors si d désigne la permutation impaire

$$d = (a_1 \ a'_1) \dots (a_{2k+1} \ a'_{2k+1})$$

nous avons pour tout $\tau \in \mathcal{S}_n$

$$\tau \sigma \tau^{-1} = (\tau d) \sigma (\tau d)^{-1}$$

et les classes de conjugaison dans S_n et A_n coïncident.

Réciproquement si σ n'a que des cycles de longueurs impaires deux à deux distinctes, alors on choisit deux entiers $1 \le i < j \le n$ apparaissant successivement dans un même cycle dans la décomposition de σ . On voit que $(i \ j)\sigma(i \ j)$ n'est pas conjuguée à σ dans \mathcal{A}_n alors qu'elle l'est dans \mathcal{S}_n .

Exercice 13 Considérons les deux éléments suivants du groupe symétrique S_9

$$\sigma_1 = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9)$$
 $\sigma_2 = (1\ 2\ 3\ 4)(5\ 6\ 7)(8\ 9)$

Justifier pourquoi σ_1 et σ_2 sont conjugués, puis exhiber une permutation $\omega \in \mathcal{S}_9$ telle que $\sigma_2 = \omega \sigma_1 \omega^{-1}$.

Quel est le cardinal (une expression sous forme de produit d'entiers suffit) de la classe de conjugaison de σ_1 dans S_9 ?

Solution 13 Les décompositions canoniques des permutations σ_1 et σ_2 font intervenir des cycles de même longueur (2, 3 et 4), ces deux permutations sont donc conjuguées. En écrivant

$$\sigma_1 = (1\ 2)(3\ 4\ 5)(6\ 7\ 8\ 9)$$
 $\sigma_2 = (8\ 9)(5\ 6\ 7)(1\ 2\ 3\ 4)$

nous trouvons parmi de nombreux choix possibles $\omega = (1 \ 8 \ 3 \ 5 \ 7 \ 2 \ 9 \ 4 \ 6)$

Le cardinal de la classe de conjugaison s'obtient en calculant le nombre de permutations de S_9 de type 2, 3, 4:

- $(9 \cdot 8)/2 = 9 \cdot 4$ choix possibles pour la transposition;
- $2 \cdot (7 \cdot 6 \cdot 5)/6 = 7 \cdot 5 \cdot 2$ choix possibles pour le 3-cycle;
- 6 choix possibles pour le 4-cycle.

soit finalement $9 \cdot 8 \cdot 7 \cdot 6 \cdot 5$ choix possibles.

Exercice 14 Montrer que le groupe symétrique S_3 est isomorphe à son groupe d'automorphisme $Aut(S_3)$.

Solution 14 L'application qui à σ fait correspondre l'automorphisme intérieur $\sigma' \mapsto \sigma \sigma' \sigma^{-1}$ est un morphisme injectif de S_3 dans $Aut(S_3)$, car le centre de S_3 est trivial.

De plus un élément de $\operatorname{Aut}(\mathcal{S}_3)$ est déterminé par l'image des générateurs (12) et (13). Il y a donc au plus 6 choix possibles (choisir deux parmi les trois éléments d'ordre 2 de \mathcal{S}_3), donc en comparant les ordres nous obtenons que le morphisme ci-dessus est en fait un isomorphisme.

Exercice 15 Montrer que tout sous-groupe d'indice n dans S_n est isomorphe à S_{n-1} .

Solution 15 Soit H un sous-groupe d'indice n dans S_n .

Si $n \ge 3$, on vérifie l'énoncé directement.

Si n = 4, alors si H $\not\simeq S_3$, alors H est cyclique (rappel : si p, q sont des nombres premiers tels que p < q et p ne divise pas q - 1 alors tout groupe d'ordre pq est cyclique) : contradiction avec le fait que S_4 ne contient pas d'élément d'ordre 6.

Supposons $n \geqslant 5$. Le groupe S_n , et donc aussi H, opère par translation à gauche sur $E = S_n/H$ d'où un homomorphisme

$$\varphi \colon \mathcal{S}_n \to \mathcal{S}_E \simeq \mathcal{S}_n.$$

Puisque $\ker \varphi = \bigcap_{a \in S_n} a H a^{-1}$, $\ker \varphi$ est distingué dans S_n et $\ker \varphi \subset H$ on a $\ker \varphi = \{id\}$ (rappel : pour $n \geqslant 5$

les sous-groupes distingués de S_n sont $\{id\}$, A_n et S_n). Pour des raisons de cardinalité $(|S_n| = |S_E \simeq S_n|)$, φ est un isomorphisme.

Comme H est le stabilisateur de la classe de idH on a : $\varphi(H) \subset \mathcal{S}_n$ est le stabilisateur d'un point et c'est donc un sous-groupe isomorphe à \mathcal{S}_{n-1} .

Exercice 16

- a) Déterminer les classes de conjugaison dans S_n .
- b) Déterminer les classes de conjugaison dans A_n .

Solution 16

a) Soit $c = (a_1 \ldots a_k)$ un k-cycle de S_n . Pour tout $\sigma \in S_n$ on a

$$\sigma c \sigma^{-1} = (\sigma(a_1) \ldots \sigma(a_k)).$$

Toute permutation se décompose de façon unique en produit de cycles à supports disjoints. Par suite les classes de conjugaison dans S_n sont paramétrées par les partitions de l'entier n. Rappelons qu'une partition de l'entier n est une famille finie d'entiers $m_i \ge 1$ tels que

$$m_1 \leqslant \ldots \leqslant m_r$$

$$\sum m_i = n.$$

La classe de conjugaison correspondant à une telle partition est l'ensemble des permutations dont la décomposition en cycles fait intervenir exactement m_i cycles de longueur i pour tout i.

b) Puisque \mathcal{A}_n est distingué dans \mathcal{S}_n la classe de conjugaison dans \mathcal{S}_n d'un élément de \mathcal{A}_n est contenue dans \mathcal{A}_n . Comme \mathcal{A}_n est d'indice 2 dans \mathcal{S}_n , la classe de conjugaison de σ dans \mathcal{S}_n est soit égale à la classe de conjugaison de σ dans \mathcal{A}_n , soit réunion de deux classes de conjugaison dans \mathcal{A}_n .

Montrons que nous sommes dans le premier cas si et seulement si σ admet un cycle de longueur paire dans sa décomposition ou σ admet au moins deux cycles de même longueur impaire dans sa décomposition. Supposons que σ admette un cycle c de longueur paire, pour tout $\tau \in \mathcal{S}_n$ on a $\tau \sigma \tau^{-1} = (\tau c)\sigma(\tau c)^{-1}$; les classes de conjugaison dans \mathcal{S}_n et \mathcal{A}_n coïncident. Si σ admet deux cycles

$$c = (a_1 \dots a_{2k+1})$$
 $c' = (a'_1 \dots a'_{2k+1})$

de même longueur impaire, alors si d désigne la permutation impaire

$$d = (a_1 \ a'_1) \dots (a_{2k+1} \ a'_{2k+1})$$

nous avons pour tout $\tau \in \mathcal{S}_n$

$$\tau \sigma \tau^{-1} = (\tau d) \sigma (\tau d)^{-1}$$

et les classes de conjugaison dans S_n et A_n coïncident.

Réciproquement si σ n'a que des cycles de longueurs impaires deux à deux distinctes, alors on choisit deux entiers $1 \leq i < j \leq n$ apparaissant successivement dans un même cycle dans la décomposition de σ . On voit que $(i \ j)\sigma(i \ j)$ n'est pas conjuguée à σ dans \mathcal{A}_n alors qu'elle l'est dans \mathcal{S}_n .

Exercice 17 Soit n un entier. Rappelons que A_n est le sous-groupe de S_n formé par les permutations paires.

- a) Montrer que le produit de deux transpositions distinctes de S_n est un 3-cycle ou un produit de deux 3-cycles. En déduire que A_n est engendré par l'ensemble des 3-cycles de S_n .
- b) i) Montrer que pour $n \ge 3$ le groupe \mathcal{A}_n est engendré par l'ensemble des 3-cycles $(1\ 2\ 3), \ldots, (1\ 2\ n)$. En déduire que \mathcal{A}_n est pour $n \ge 3$ stable par tout automorphisme ϕ de \mathcal{S}_n (autrement dit \mathcal{A}_n est un sous-groupe caractéristique de \mathcal{S}_n).
 - ii) Montrer que A_n est engendré
 - si n est impair ≥ 5 par $(1\ 2\ 3)$ et $(3\ 4\ \dots\ n)$;
 - si n est pair ≥ 4 par $(1\ 2\ 3)$ et $(1\ 2)(3\ 4\ ...\ n)$.
- c) Montrer que pour $n \ge 5$ le groupe \mathcal{A}_n est engendré par l'ensemble des permutations de \mathcal{S}_n de la forme $(a\ b)(c\ d)$ avec $a,\ b,\ c,\ d$ deux à deux distincts.

Solution 17

a) Soient i < j < k < l. Nous avons

$$(i \ j)(k \ l) = (i \ j)(j \ k)(j \ k)(k \ l)$$

Or
$$(i \ j)(j \ k) = (i \ j \ k)$$
 donc

$$(i \ j)(k \ l) = (i \ j \ k)(j \ k \ l).$$

Tout élément σ de \mathcal{A}_n est le produit d'un nombre pair de transpositions donc un produit de 3-cycles. Le sous-groupe de \mathcal{A}_n engendré par les 3-cycles contient donc \mathcal{A}_n , c'est donc \mathcal{A}_n .

b) i) Soient i, j et k des éléments de $\{1, \ldots, n\}$ tels que i < j < k. Nous avons

$$(i \ j \ k) = (1 \ 2 \ i)(2 \ j \ k)(1 \ 2 \ i)^{-1}$$

 et

$$(2 j k) = (1 2 j)(1 2 k)(1 2 j)^{-1}$$

donc $A_n \subset \langle (1\ 2\ 3), \ldots, (1\ 2\ n) \rangle$. Il en résulte que

$$\mathcal{A}_n = \langle (1\ 2\ 3), \ldots, (1\ 2\ n) \rangle.$$

Soient ϕ un automorphisme de \mathcal{S}_n et σ un 3-cycle. L'ordre de $\phi(\sigma)$ est 3. Donc $\phi(\sigma)$ est un produit de 3-cycles car son ordre est le ppcm des longueurs des cycles qui interviennent dans sa décomposition en cycles. Le groupe \mathcal{A}_n est donc caractéristique dans \mathcal{S}_n .

ii) Pour $i \ge 4$ et $n \ge 4$ nous avons

$$(1\ 2\ i) = (3\ 4\ \dots\ n)^{i-3}(1\ 2\ 3)(3\ 4\ \dots\ n)^{-3+i}.$$

Par ailleurs si $n \ge 5$ est impair, $(3\ 4\ \dots\ n)$ est une permutation paire car c'est un cycle de longueur impaire n-2. Ainsi pour $n \ge 5$ impair on a

$$\mathcal{A}_n = \langle (1\ 2\ 3), (3\ 4\ \dots\ n) \rangle$$

Nous avons

$$(1\ 2)^{\alpha}(1\ 2\ i)(1\ 2)^{\alpha} = \begin{cases} (1\ 2\ i) \text{ pour } \alpha \text{ pair} \\ (1\ 2\ i)^{-1} \text{ pour } \alpha \text{ impair} \end{cases}$$

Donc puisque pour $i \geqslant 4$ et $n \geqslant 4$

$$(1\ 2\ i) = (3\ 4\ \dots\ n)^{i-3}(1\ 2\ 3)(3\ 4\ \dots\ n)^{-3+i}.$$

alors pour $i\geqslant 4$ impair et $n\geqslant 4$

$$(1\ 2\ i) = [(1\ 2)(3\ 4\ \dots\ n)]^{i-3}(1\ 2\ 3)[(1\ 2)(3\ 4\ \dots\ n)]^{-3+i}.$$

Et pour $i \geqslant 4$ pair et $n \geqslant 4$

$$(1\ 2\ i) = \left[\left((1\ 2)(3\ 4\ \dots\ n) \right)^{i-3} (1\ 2\ 3) \left((1\ 2)(3\ 4\ \dots\ n) \right)^{-3+i} \right]^{-1}.$$

Or si $n \ge 4$ est pair $(1\ 2)(3\ 4\ \dots\ n)$ est une pemutation paire. Par conséquent le groupe \mathcal{A}_n est engendré par $(1\ 2\ 3)$ et $(1\ 2)(3\ 4\ \dots\ n)$.

c) Il suffit de montrer que tout 3-cycle $(i\ j\ k)$ (avec i < j < k) est produit de permutations de la forme $(a\ b)(c\ d)$ où $a,\ b,\ c$ et d sont deux à deux distincts. Puisque $n \geqslant 5$ il existe ℓ et m dans $\{1,\ 2,\ \ldots, n\}$ tels que $i,\ j,\ k,\ \ell$ et m soient 2 à 2 distincts. Or nous avons

$$(i j k) = (m \ell)(j k)(m \ell)(i k)$$

d'où le résultat.