Feuille d'exercices nº 4 : Théorèmes de Sylow

Exercice 1

- 1. Quels sont les sous-groupes de Sylow de A_4 ?
- 2. Déterminer l'ordre de tous les éléments de A_4 . Le groupe A_4 possède-t-il un sous-groupe cyclique d'ordre 6?
- 3. Soit H un sous-groupe de A_4 engendré par un élément d'ordre 2 et un élément d'ordre 3.

Montrer que H contient au moins trois éléments d'ordre 3.

Peut-il être isomorphe à S_3 ?

En déduire qu'il n'y a pas de sous-groupe d'ordre 6 dans A_4 .

4. Donner la liste des sous-groupes de A_4 .

Solution 1

1. Déterminons les les sous-groupes de Sylow de A_4 .

L'ordre de \mathcal{A}_4 est $12=2^2\times 3$. Soient n_2 le nombre de sous-groupes de Sylow d'ordre $2^2=4$ et n_3 le nombre de sous-groupes de Sylow d'ordre 3. Les théorèmes de Sylow assurent que

$$n_2 \equiv 1 \mod 2$$
 $n_2|3$

$$n_3 \equiv 1 \bmod 3 \qquad \qquad n_3 \mid 2^2 = 4$$

autrement dit que $n_2 \in \{1, 3\}$ et $n_3 \in \{1, 4\}$.

Le groupe \mathcal{A}_4 ne contient pas de cycle de longueur 4 donc les seuls éléments d'ordre pair sont les doubles transpositions. Il y en a trois donc \mathcal{A}_4 contient un seul sous-groupe d'ordre 4 isomorphe au groupe de Klein, i.e. $\mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$ (en effet d'après le théorème de Lagrange un sous-groupe K de \mathcal{A}_4 d'ordre 4 contient des éléments d'ordre 1, 2 ou 4; mais \mathcal{A}_4 ne contient pas d'élément d'ordre 2 donc K contient des éléments d'ordre 1 ou 4. Comme \mathcal{A}_4 contient un seul élément d'ordre 1 et trois éléments d'ordre 4 il contient un seul sous-groupe d'ordre 4).

Le groupe A_4 contient les cycles de longueur 3. Il y en a plus de deux donc $n_3 = 4$.

2. Déterminons l'ordre de tous les éléments de A_4 . Le groupe A_4 possède-t-il un sous-groupe cyclique d'ordre 6?

Le groupe \mathcal{A}_4 contient trois éléments d'ordre 2, huit éléments d'ordre 3 et un élément d'ordre 1. Le groupe \mathcal{A}_4 ne contient donc aucun élément d'ordre 6 et ne contient donc pas de sous-groupe cyclique d'ordre 6.

3. Soit H un sous-groupe de \mathcal{A}_4 engendré par un élément d'ordre 2 et un élément d'ordre 3.

Notons que

$$(a\ b)(c\ d)(a\ b\ c) = (b\ d\ c)$$

Le groupe H contient les 3-cycles : $(a \ b \ c)$, $(a \ c \ b)$ et $(b \ d \ c)$ donc les trois sous-groupes d'ordre 3

$$\langle (a \ b \ c) \rangle, \qquad \langle (a \ c \ b) \rangle, \qquad \langle (b \ d \ c) \rangle.$$

Un groupe d'ordre 6 ne contient qu'un sous-groupe d'ordre 3 (en effet soit K un sous-groupe d'ordre $6 = 2 \times 3$. Désignons par n_3' le nombre de 3-Sylow de K; d'une part $n_3' \equiv 1 \mod 3$ d'autre part $n_3' \mid 2$ donc $n_3' = 1$). Par conséquent le groupe H n'est pas d'ordre 6. En particulier H ne peut pas être isomorphe à S_3 qui est d'ordre 6.

- 4. Le groupe A_4 contient :
 - un sous-groupe d'ordre 1 : {id};
 - trois sous-groupes d'ordre $\hat{2}$:

$$\langle (1\ 2)(3\ 4)\rangle \qquad \qquad \langle (1\ 3)(2\ 4)\rangle \qquad \qquad \langle (1\ 4)(2\ 3)\rangle;$$

— quatre sous-groupes d'ordre 3 :

$$\langle (1\ 2\ 3)\rangle \qquad \langle (1\ 2\ 4)\rangle \qquad \langle (1\ 3\ 4)\rangle \qquad \langle (2\ 3\ 4)\rangle;$$

— un sous-groupe d'ordre 4 :

$$\{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}.$$

Exercice 2 [Simplicité de A_n , $n \ge 5$]

- I) Commençons par démontrer que le groupe A_5 est simple.
 - Soit G un groupe. Un sous-groupe H de G est caractéristique si pour tout automorphisme φ de G on $\varphi(H) \subset H$.
 - I) a) Montrer que tout p-Sylow distingué d'un groupe d'ordre fini est caractéristique.
 - I) b) Montrer que tout groupe d'ordre 15 est cyclique.
 - I) c) Montrer que tout groupe d'ordre 30 contient un sous-groupe distingué d'ordre 15.
 - I) d) Montrer que tout groupe d'ordre 30 ne contient qu'un seul 5-Sylow (d'ordre 5).
 - I) e) Montrer que tout groupe d'ordre 20 contient un seul sous-groupe d'ordre 5.
 - I) f) Montrer que tout groupe d'ordre 12 contient un sous-groupe caractéristique.
 - I) g) Montrer que tout groupe d'ordre 6 contient un sous-groupe caractéristique.
 - I) h) Montrer que tout groupe d'ordre 60 qui contient strictement plus d'un 5-Sylow est simple.
 - I) i) Montrer que le groupe A_5 est simple.
- II) Soit $n \ge 6$. Supposons que \mathcal{A}_{n-1} soit simple. Soit H un sous-groupe distingué de \mathcal{A}_n non trivial.
 - II) a) Montrer qu'il existe $\tau \in H$ distinct de l'identité qui a au moins un point fixe.
 - II) b) Montrer que pour tout $1 \leq j \leq n$ le sous-groupe $G_j = \operatorname{Stab}_{\mathcal{A}_n}(\{j\})$ est inclus dans H.
 - II) c) Supposons que $H \neq \{id\}$. Montrer que $A_n = H$.
 - II) d) En déduire que A_n est simple pour $n \ge 5$.

Solution 2

- I) a) Soit G un groupe d'ordre fini. Soit H un p-Sylow de G qui est distingué. Soit φ un automorphisme de G. L'image de H par φ est un sous-groupe de même ordre que H, *i.e.* φ (H) est un p-Sylow de G. Mais H est l'unique p-Sylow de G car H est distingué. Par conséquent φ (H) = H.
- I) b) Soit H un groupe d'ordre 15. Il a exactement un sous-groupe d'ordre 5 et un sous-groupe d'ordre 3. Ces deux sous-groupes sont distingués dans H. Par suite $H \simeq \mathbb{Z}/3\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \simeq \mathbb{Z}/15\mathbb{Z}$ et est donc cyclique.
- I) c) Soit G un groupe d'ordre 30. Remarquons tout d'abord que tout sous-groupe d'ordre 15 de G est distingué dans G car il est d'indice 2 dans G.

Il suffit donc de démontrer l'existence d'un sous-groupe d'ordre 15 dans le groupe G.

— Supposons que G contienne plus d'un seul 5-Sylow, i.e. $n_5 > 1$. Puisque

$$n_5 \equiv 1 \pmod{5} \qquad \qquad n_5 \mid 6$$

on a $n_5 = 6$. Ainsi on a 6×4 éléments d'ordre 5, ce qui en ajoutant id fait 25 éléments de G. Il y a donc exactement un seul 3-Sylow que nous noterons K (sinon il y en aurait 10 donc 20 éléments d'ordre 3 soit 45 éléments au moins dans G). En particulier K est distingué dans G. Si H est l'un des sous-groupes d'ordre 5, $K \cap H = \{id\}$ et KH est un sous-groupe d'ordre 15 de G.

— Supposons que G contienne un seul 5-Sylow H; il est alors distingué dans G. Si K est l'un des sous-groupes d'ordre 3 de G (il y en a au moins un) $K \cap H = \{id\}$ et KH est un sous-groupe d'ordre 15 dans le groupe G.

- I) d) Au I) c) on a vu d'une part que tout groupe G d'ordre 30 contient un sous-groupe K d'ordre 3 et un sous-groupe H d'ordre 5 et d'autre part que K ou H est distingué dans G.
 - Les groupes K et H sont distingués dans KH et sont donc caractéristiques (voir I)a)) dans le groupe KH qui est cyclique et distingué dans G (car d'indice 2 dans G). Donc en fait K et H sont distingués dans G et G a un unique 5-Sylow.
- I) e) Soit G un groupe d'ordre $20=2^2\times 5$. Le groupe G contient un sous-groupe distingué d'ordre 5: d'après les théorèmes de Sylow

$$n_5 \equiv 1 \bmod 5 \qquad \qquad n_5 \mid 4$$

d'où $n_5 = 1$.

I) f) Soit G un groupe d'ordre 12. Intéressons-nous aux 3-Sylow de G. Les théorèmes de Sylow assurent que

$$n_3 \equiv 1 \mod 3 \qquad \qquad n_3 \mid 4$$

Il en résulte que $n_3 = 1$ ou $n_3 = 4$.

- Si $n_3 = 1$, alors G contient un unique 3-Sylow qui est distingué dans G; ce sous-groupe est un sous-groupe caractéristique d'ordre 3 (cf I) a)).
- Si $n_3 = 4$, on dénombre $4 \times 2 = 8$ éléments d'ordre 3; en ajoutant le neutre on compte donc 9 éléments. Considérons maintenant les 2-Sylow de G. D'après les théorèmes de Sylow on a

$$n_2 \equiv 1 \bmod 2 \qquad \qquad n_2 \mid 3$$

Ainsi n_2 appartient à $\{1, 3\}$. Si $n_2 = 3$, on a trois sous-groupes d'ordre 4, soit trop d'éléments. Ainsi $n_2 = 1$, l'unique 2-Sylow est distingué dans G et donc caractéristique dans G (cf I) a)).

I) g) Soit G un groupe d'ordre $6 = 2 \times 3$. Considérons ses 3-Sylow. Les théorèmes de Sylow assurent que

$$n_3 \equiv 1 \mod 3$$
 $n_3 \mid 2$

autrement dit que $n_3=1$. Ainsi G compte un unique 3-Sylow qui est donc distingué dans G et I) b) permet de conclure.

I) h) Soit G un groupe d'ordre 60 qui contient strictement plus d'un 5-Sylow. D'après les théorèmes de Sylow

$$n_5 \equiv 1 \mod 5 \qquad \qquad n_5 \mid 12$$

d'où $n_5 \in \{1, 6\}$. Par hypothèse $n_5 \neq 1$ donc $n_5 = 6$.

Raisonnons par l'absurde : supposons que G ne soit pas simple. Soit H un sous-groupe distingué propre de G. Notons que

$$|H| \in \{2, 3, 4, 5, 6, 10, 12, 15, 20, 30\}.$$

- ◇ Si |H| est divisible par 5 alors H contient au moins un 5-Sylow de G. Mais H est distingué et les 5-Sylow se déduisent les uns des autres par conjugaison; ainsi H contient tous les 5-Sylow de G. On en déduit que H contient déjà 6 × 4 éléments d'ordre 5. Par ailleurs |H| divise 60 donc |H| = 30 (rappelons que comme H est un sous-groupe propre de G, on a |H| < 60). Mais dans ce cas H ne contient qu'un seul sous-groupe d'ordre 5 (voir I)d)) : contradiction avec le fait qu'il en contient 6. Par suite |H| n'est pas divisible par 5.</p>
- ♦ Si |H| appartient à {6, 12}, alors il existe un sous-groupe caractéristique de H d'ordre 2, 3 ou 4 (d'après I)f) et I)g)). Ce sous-groupe caractéristique de H, qui est lui-même distingué dans G, est distingué dans G.
- ♦ Nous pouvons donc maintenant supposer que H est d'ordre 2, 3 ou 4. Dans ce cas G_H est d'ordre 30, 20 ou 15 (on renvoie à I)d) si G_H est d'ordre 30, à I)e) si G_H est d'ordre 20; enfin si G_H est d'ordre 15 = 3 × 5 et si n_5 est le nombre de 5-Sylow de G_H , les théorèmes de Sylow assurent que $n_5 \equiv 1$ mod 5 et n_5 divise 3 donc $n_5 = 1$). Donc G_H contient un sous-groupe K distingué d'ordre 5. Considérons la surjection canonique $\pi: G \to G_H$. Le sous-groupe $\pi^{-1}(K)$ contient H et est distingué dans G. Or $\pi^{-1}(K)_H$ est isomorphe à $K = \pi(\pi^{-1}(K))$ donc $|\pi^{-1}(K)|$ est divisible par 5 : contradiction (voir le premier ϕ du I)h)).
- I) i) Le groupe A_5 est d'ordre 60 et contient au moins deux 5-Sylow distincts engendrés par les 5-cycles (1 2 3 4 5) et (1 3 2 4 5). D'après I) h) le groupe A_5 est simple.

II) a) Remarque. Supposons que pour tout $\tau \in H \setminus \{id\}$ et pour tout i on ait $\tau(i) \neq i$. Alors si τ_1 et τ_2 sont deux éléments de H qui coïncident en un point i, ils sont égaux. En effet si $\tau_1(i) = \tau_2(i)$ alors $\tau_2^{-1}\tau_1(i) = i$. De plus $\tau_2^{-1}\tau_1$ appartient à H donc par hypothèse $\tau_2^{-1}\tau_1 = id$, i.e. $\tau_1 = \tau_2$.

Raisonnons par l'absurde : supposons qu'aucun élément non trivial de H n'a de point fixe, *i.e.* supposons que pour tout $\tau \in H \setminus \{id\}$ et pour tout i on ait $\tau(i) \neq i$.

 \diamond Montrons dans un premier temps qu'aucun élément de H ne contient dans sa décomposition en cycles disjoints des cycles d'ordre $\geqslant 3$. Raisonnons par l'absurde : supposons qu'il existe τ dans H tel que la décomposition de τ en produit de cycles disjoints contient un cycle d'ordre $\geqslant 3$ alors on peut écrire

$$\tau = (a_1 \ a_2 \ a_3 \ \dots)(b_1 \ b_2 \ \dots)\dots$$

Puisque $n \ge 6$ il existe σ dans \mathcal{A}_n tel que $\sigma(a_1) = a_1$, $\sigma(a_2) = a_2$ et $\sigma(a_3) \ne a_3$. Alors

$$\sigma \tau \sigma^{-1} = (a_1 \ a_2 \ \sigma(a_3) \ \ldots)(\sigma(b_1) \ \sigma(b_2) \ \ldots) \ldots$$

Ainsi $\sigma\tau\sigma^{-1}(a_1) = \tau(a_1) = a_2$. À noter que $\sigma\tau\sigma^{-1}$ appartient à H car H est distingué. La remarque qui précède assure donc que $\sigma\tau\sigma^{-1} = \tau$. Mais $\sigma\tau\sigma^{-1}(a_2) = \sigma(a_3) \neq a_3$ et $a_3 = \tau(a_2)$ donc $\sigma\tau\sigma^{-1}(a_2) \neq \tau(a_2)$: contradiction. Ainsi aucun élément de H ne contient dans sa décomposition en cycles disjoints des cycles d'ordre $\geqslant 3$. Les éléments de H sont donc des produits de transpositions disjointes.

 \diamond Considérons un élément τ de H. D'après ce qui précède τ est un produit de transpositions disjointes. À noter que si τ est une double transposition alors elle laisse fixe un élément ce qui est contraire à l'hypothèse. Ainsi τ s'écrit

$$\tau = (a_1 \ a_2)(a_3 \ a_4)(a_5 \ a_6)\dots$$

Soit $\sigma = (a_1 \ a_2)(a_3 \ a_5)$. Alors on a

$$\sigma \tau \sigma^{-1} = (a_1 \ a_2)(a_5 \ a_4)(a_3 \ a_6) \dots$$

D'une part $\sigma\tau\sigma^{-1}(a_2)=\tau(a_2)$ donc $\sigma\tau\sigma^{-1}=\tau$ (cf Remarque). D'autre part $\sigma\tau\sigma^{-1}(a_3)=\tau(a_3)$: contradiction.

Le groupe H contient donc au moins un élément non trivial qui possède un point fixe.

II) b) Soit τ un élément de H \ {id} pour lequel il existe $1 \le i \le n$ tel que $\tau(i) = i$ (l'existence d'un tel τ est assurée par II) a)). Ainsi τ appartient à $G_i \cap H$ qui est un sous-groupe distingué de G_i . Or G_i est isomorphe à \mathcal{A}_{n-1} donc l'hypothèse de récurrence implique que G_i est simple donc ou bien $G_i \cap H = G_i$ ou bien $G_i \cap H = \{id\}$. Or τ est un élément non trivial de $G_i \cap H$ donc $G_i \cap H = G_i$, c'est-à-dire G_i est inclus dans H.

Par ailleurs pour tout σ dans S_n on a $\sigma G_i \sigma^{-1} = G_{\sigma(i)}$ d'où $G_i \subset H$ donc $G_{\sigma(i)} = \sigma G_i \sigma^{-1} \subset \sigma H \sigma^{-1} = H$. Autrement dit pour tout $1 \leq j \leq n$ on a l'inclusion $G_j \subset H$.

II) c) Bien sûr $H \subset A_n$ donc pour montrer que $A_n = H$ il suffit de montrer que $A_n \subset H$. Considérons un élément g de A_n . C'est un produit d'un nombre pair de transpositions, il s'écrit donc

$$g = t_1 t_2 \dots t_k$$

où chaque t_j est un produit de deux transpositions. Le support de chaque t_j contient au plus quatre éléments donc t_j appartient à G_i pour un i extérieur à ce support. Par suite $\mathcal{A}_n \subset G_1G_2 \ldots G_n$. Mais $G_1G_2 \ldots G_n \subset H$ (cf II) b)). Il en résulte que $\mathcal{A}_n \subset H$.

II) d) Le groupe A_5 est simple (I)i)). Pour $n \ge 6$ tout sous-groupe distingué de A_n différent de {id} est égal à A_n (cf II) c)).

Exercice 3 Soit $G = SL(2, \mathbb{F}_2)$ le groupe des matrices à coefficients dans le corps à deux éléments et de déterminant 1.

- 1. Quel est l'ordre de G? Déterminer ses 2-Sylow et 3-Sylow. Que peut-on dire du 3-Sylow?
- 2. Soit X l'ensemble des 2-Sylow de G. Donner la liste de ses éléments.

On fait opérer G sur X par conjugaison : si $g \in G$ et $S \in X$ on pose

$$g \cdot S = gSg^{-1} = \{ghg^{-1} \, | \, h \in S\}$$

Montrer par un calcul direct que cette action est transitive.

Quel est le stabilisateur de

$$S_0 = \left\{ \text{Id}, \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\}?$$

3. On note S_X le groupe des bijections de X dans lui-même. Montrer que

$$\phi \colon G \to \mathcal{S}_X, \qquad g \mapsto (S \mapsto g \cdot S)$$

est un isomorphisme de groupes.

Solution 3

- 1. Déterminons l'ordre de G. Soit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ un élément de G. Nous avons $ad + bc = \overline{1}$ donc
 - ou bien $ad = \overline{1}$ et $bc = \overline{0}$;
 - ou bien $ad = \overline{0}$ et $bc = \overline{1}$.

On a $ad = \overline{1}$ et $bc = \overline{0}$ si et seulement si (a, b, c, d) = (1, 0, 1, 1) ou (a, b, c, d) = (1, 1, 0, 1) ou (a, b, c, d) = (1, 1, 0, 1)(1,0,0,1) ce qui donne 3 possibilités.

De même $ad = \overline{0}$ et $bc = \overline{1}$ donne 3 possibilités.

Déterminer ses 2-Sylow et 3-Sylow. Que peut-on dire du 3-Sylow?

Soient n_2 le nombre de 2-Sylow de G et n_3 le nombre de 3-Sylow de G. Les théorèmes de Sylow assurent que

$$n_2 \equiv 1 \mod 2$$
 $n_2|3$

et

$$n_3 \equiv 1 \mod 3$$
 $n_3 \mid 2$

Par conséquent $n_3 = 1$, i.e. G contient un unique 3-Sylow qui est donc distingué dans G. Le seul sousgroupe d'ordre 3 est constitué de l'identité, de $D = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$ et $D^{-1} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$.

Les éléments d'ordre 2 sont

$$A = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \hspace{1cm} B = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array} \right) \hspace{1cm} C = \left(\begin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right)$$

2. Soit X l'ensemble des 2-Sylow de G. La liste des éléments de X est : $\{\langle A \rangle, \langle B \rangle, \langle C \rangle\}$.

On fait opérer G sur X par conjugaison : si $q \in G$ et $S \in X$ on pose

$$g\cdot S = gSg^{-1} = \{ghg^{-1}\,|\, h\in S\}$$

Montrons par un calcul direct que cette action est transitive :

$$B \cdot \langle A \rangle = \langle C \rangle$$
 $A \cdot \langle C \rangle = \langle B \rangle$ $C \cdot \langle B \rangle = \langle A \rangle$

Quel est le stabilisateur de

$$S_0 = \left\{ \text{Id}, \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right\} ?$$

Déterminons le stabilisateur de $\langle A \rangle$. C'est un sous-groupe de G dont l'ordre divise |G|. Il contient Id et A mais ni B, ni C. Par ailleurs $B \cdot \langle A \rangle = \langle C \rangle$. Ce stabilisateur est donc $\langle A \rangle$.

3. On note S_X le groupe des bijections de X dans lui-même. Montrer que

$$\phi \colon G \to \mathcal{S}_X, \qquad g \mapsto (S \mapsto g \cdot S)$$

est un isomorphisme de groupes.

Puisque G agit sur X le morphisme ϕ est un morphisme de groupes. Il est injectif car ker $\phi = \{e_G\}$. Comme S_X et G ont même ordre (6) nous obtenons que ϕ est un isomorphisme.

Exercice 4 Montrer que S_4 possède trois 2-sous-groupes de Sylow isomorphes à D_8 .

Solution 4 Le groupe S_4 est d'ordre $24 = 2^3 \times 3$. Par ailleurs D_8 est le groupe des isométries du plan qui conservent un carré donc $D_8 \subset S_4$.

Soit n_2 le nombre de 2-Sylow de S_4 . Le groupe D_8 est l'un de ces 2-Sylow. Les théorèmes de Sylow assurent que n_2 divise 3 et $n_2 \equiv 1 \mod 2$. Il s'en suit que $n_2 \in \{1, 3\}$. Si $n_2 = 1$, alors D_8 est distingué dans S_4 . Désignons les sommets du carré préservé par D_8 par 1, 2, 3 et 4 dans l'ordre où on les rencontre lorsqu'on se déplace dans le sens positif sur ce carré. Soit r la rotation d'angle $\frac{\pi}{2}$. C'est la permutation (1 2 3 4). Notons que $(2 \ 3)r(2 \ 3) = (1 \ 3 \ 2 \ 4)$ n'appartient pas à D_8 . Ainsi D_8 n'est pas distingué dans S_4 . Il y a donc 3 sous-groupes d'ordre 8 qui sont conjugués donc isomorphes. Ces trois sous-groupes sont les trois 2-Sylow de S_4 .

Exercice 5 Soit G un groupe. Soit p un nombre premier divisant |G|.

Montrer que si H est un p-sous-groupe de G distingué dans G, alors H est contenu dans tout p-sous-groupe de Sylow de G.

Solution 5 Si H est un p-sous-groupe de G, il existe un p-Sylow de G qui contient H. Puisque $H \triangleleft G$ et que les p-Sylow sont conjugués entre eux, H se trouve dans tous les p-Sylow de G.

Exercice 6 Montrer qu'un groupe d'ordre 56 n'est pas simple.

Solution 6 Soit G un groupe d'ordre $56 = 2^3 \times 7$. Soit n_2 le nombre de 2-Sylow et n_7 le nombre de 7-Sylow. D'après les théorèmes de Sylow

$$n_2 \equiv 1 \pmod{2} \qquad \qquad n_2 \mid 7$$

$$n_7 \equiv 1 \pmod{7} \qquad \qquad n_7 | 8$$

Par conséquent $n_2 \in \{1, 7\}$ et $n_7 \in \{1, 8\}$.

Si $n_7 = 1$, alors d'après les théorèmes de Sylow G possède un sous-groupe distingué propre donc G n'est pas simple.

Supposons que $n_7 \neq 1$, alors $n_7 = 8$ et G compte huit sous-groupes d'ordre 7, c'est-à-dire déjà 8(7-1) = 48 éléments d'ordre 7 (remarque : 7-1 = nombre d'éléments non triviaux d'un sous-groupe d'ordre 7). En ajoutant l'élément neutre nous avons donc "listé" 49 éléments du groupe G. Si $n_2 \neq 1$, alors $n_2 = 7$, on a donc au moins deux sous-groupes de G distincts d'ordre $2^3 = 8$ qui sont isomorphes ce qui ajoute plus de sept éléments. Le groupe G compte donc plus de 56 éléments : contradiction. Par suite $n_2 = 1$; d'après les théorèmes de Sylow G possède un sous-groupe distingué propre donc G n'est pas simple.

Exercice 7 Montrer qu'un groupe d'ordre pq, où p et q sont premiers et distincts, ne peut être simple.

Solution 7 Soit G un groupe d'ordre pq. Quitte à renommer p et q nous pouvons supposer que p > q. Soit n_p le nombre de p-Sylow de G.

Les théorèmes de Sylow assurent que $n_p \equiv 1 \pmod{p}$ et n_p divise q, autrement dit que $n_p \equiv 1 \pmod{p}$ et $n_p \in \{1, q\}$. Mais comme p > q, $q \not\equiv 1 \pmod{p}$. Par suite $n_p = 1$, *i.e.* il y a un seul p-Sylow dans G qui est un sous-groupe d'ordre p distingué dans G et propre. Il s'en suit que G n'est pas simple.

Exercice 8 Soient p et q deux nombres premiers.

Montrer qu'il existe au plus deux structures de groupes d'ordre pq.

Solution 8

Exercice 9 Soit $G = SL(2, \mathbb{F}_3)$ le groupe des matrices 2×2 de déterminant égal à 1 et à coefficients dans le corps $\mathbb{F}_3 = \mathbb{Z}/_{3\mathbb{Z}}$.

- 1. Montrer que G est d'ordre 24.
- 2. Quel est l'ordre des éléments $\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ de G?
- 3. Combien G a-t-il de 3-sous-groupes de Sylow?

- 4. Montrer que le sous-groupe H engendré par $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ est le seul sous-groupe de G d'ordre 8.
- 5. Montrer que G est produit semi-direct de H par un sous-groupe K d'ordre 3.
- 6. Montrer que le centre de Z(G) de G est égal à {id, -id}.
- 7. Montrer que ${}^{G}\!\!/_{Z(G)} \simeq \mathcal{A}_4$ (rappelons que les éléments (1 2 3), (1 2)(3 4) et (1 3)(2 4) engendrent le groupe \mathcal{A}_4).

Solution 9

1. Montrons que G est d'ordre 24.

Une matrice de G s'écrit $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ avec $ad - bc = \overline{1}$ et a, b, c et d dans $\mathbb{Z}/_{3\mathbb{Z}}$. Cela donne 24 cas possibles pour M.

- 2. Les ordres cherchés sont des diviseurs de 24 bien sûr. La matrice $\begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix}$ est d'ordre 6. Les matrices $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ et $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ sont d'ordre 3.
- 3. Soit n_3 le nombre de 3-Sylow de G qui est d'ordre $24 = 2^3 \times 3$. Notons que les 3-Sylow sont donc d'ordre 3. Les théorèmes de Sylow assurent que $n_3 \equiv 1 \pmod{3}$ et que n_3 divise $2^3 = 8$. Il s'en suit que $n_3 \in \{1, 4\}$. D'après 2. il y a au moins deux sous-groupes de G d'ordre 3. Par conséquent $n_3 = 4$.
- 4. Montrer que le sous-groupe H engendré par $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ est le seul sous-groupe de G d'ordre 8.

Vérifions dans un premier temps que H est d'ordre 8. En effet $A^2 = B^2 = -\mathrm{id}$ donc A et B sont d'ordre 4. Posons $C = AB = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$. On vérifie que

$$H = \{id, -id, A, -A, B, -B, C, -C\}$$

(le groupe H est le groupe des quaternions).

Soit
$$N = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
. Alors $N^{-1} = \begin{pmatrix} d & b \\ -c & a \end{pmatrix}$.

Posons $M=NAN^{-1}$ et $L=NBN^{-1}$. Remarquons que si x appartient à $\mathbb{Z}_{3\mathbb{Z}}$ et $x\neq \overline{O}$, alors $x^2=\overline{1}$. Un calcul montre que

$$M = \left(\begin{array}{cc} bd + ac & -(a^2 + b^2) \\ (c^2 + d^2) & -(bd + ac) \end{array} \right)$$

Comme N appartient à G, nous avons $ad - bc = \overline{1}$.

Si $a=\overline{0}$, alors $-bc=\overline{1}$ et b=-c. Si $d=\overline{0}$, alors M=A appartient à H. Si $d\neq\overline{0}$, alors $M=\begin{pmatrix} 1 & -1 \\ -1 & -1 \end{pmatrix}=-C$ ou $M=\begin{pmatrix} -1 & -1 \\ -1 & 1 \end{pmatrix}=-M$; dans les deux cas M appartient à H.

Si maintenant $abcd \neq \overline{0}$, alors a = -d et b = c donc M = -A appartient à H.

On démontre de manière analogue que L appartient à H. Ainsi H est distingué dans G. Of H est un 2-Sylow de G. Par suite il n'y a qu'un seul 2-Sylow dans G puisque par conjugaison à partir d'un 2-Sylow on obtient tous les 2-Sylow. Or les 2-Sylow sont les sous-groupes d'ordre 8 de G. Il y a donc un unique sous-groupe d'ordre 8 dans G qui est H.

- 5. Montrons que G est produit semi-direct de H par un sous-groupe K d'ordre 3.
 - Soit K l'un des sous-groupes d'ordre 3 de G. Nous avons les propriétés suivantes : $H \cap K = \{e\}$, H est distingué dans G et $3 \times 8 = 24$. Il s'en suit que G est un produit semi-direct de H par K.

Nous avons $G = H \rtimes_{\rho} K$ où $\rho \colon K \to Aut(H)$ est tel que $\rho(k)$ est l'automorphisme intérieur associé à l'élément $k \in K$.

6. Montrons que le centre de Z(G) de G est égal à {id, -id}. Un élément M de G appartient à Z(G) si en particulier MA = AM et MB = BM. Or AM = MA si et seulement si

$$\left(\begin{array}{cc} -c & -d \\ a & b \end{array}\right) = \left(\begin{array}{cc} b & -a \\ d & -c \end{array}\right)$$

et BM = MB si et seulement si

$$\left(\begin{array}{cc} a+b & b+d \\ a+c & b-d \end{array}\right) = \left(\begin{array}{cc} a+b & a-b \\ c+d & c-d \end{array}\right).$$

Ces deux égalités conduisent à $a=d,\,b=-c,\,b+d=a-b,\,a=d$ et b=c, soit à a=d et $b=c=0,\,i.e.$ à $M=\pm \mathrm{id}.$ Par suite $Z(G)=\{\mathrm{id},\mathrm{id}\}.$

7. Montrons que $G/Z(G) \simeq A_4$.

Considérons ici G comme produit semi-direct de H par K. Définir un morphisme φ de G dans \mathcal{A}_4 c'est définir φ sur H et K en respectant l'action de K sur H. Définir φ sur H c'est le définir sur les générateurs A et B en s'assurant que leurs images vérifient les mêmes relations, c'est-à-dire $A^2 = B^2 = (AB)^2$. On vérifie que φ défini par

$$\varphi(A) = (1 \ 2)(3 \ 4)$$
 $\qquad \qquad \varphi(B) = (1 \ 3)(2 \ 4)$ $\qquad \qquad \varphi(C) = (1 \ 2 \ 3)$

convient et que $\ker \varphi = \{id, -id\}$. Par suite $G_{Z(G)} = G_{\ker \varphi} \simeq A_4$.

Exercice 10 Soit G' un sous-groupe d'ordre p(p-1) de S_p .

Montrer que G' est le normalisateur d'un p-Sylow de S_p .

En déduire que K est conjugué de tous les sous-groupes d'ordre p(p-1) de S_p .

Solution 10

Exercice 11 Si G est un groupe, on peut faire agir G par conjugaison sur lui-même.

- (1) Montrer que le centre Z(G) de G est constitué des éléments dont l'orbite est réduite à un point.
- (2) (i) Si G est un p-groupe, p premier, montrer que le centre de G n'est pas réduit à $\{1\}$.
 - (ii) Soit G un groupe tel que $^{\rm G}\!/_{Z({\rm G})}$ soit cyclique. Montrer qu'alors G est abélien.
- (3) Montrer que le groupe des matrices triangulaires supérieures unipotentes

$$G = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \in GL(3, \mathbb{F}_p) \right\}$$

est un groupe non-abélien d'ordre p^3 .

Solution 11

(1) Montrons que le centre Z(G) de G est constitué des éléments dont l'orbite est réduite à un point. C'est la définition du centre :

$$Z(G) = \{x \in G \mid gxg^{-1} = x \text{ pour tout } g \in G\}.$$

(2) (i) Si G est un p-groupe, p premier, montrons que le centre de G n'est pas réduit à $\{1\}$. Notons Ω_i , $i \in I$, les orbites non réduites à un singleton. Puisque $|\Omega_i|$ divise |G| chaque $|\Omega_i|$ est une puissance de p distincte de 1. En écrivant G comme une union disjointe d'orbites on obtient

$$|\mathbf{G}| = |Z(\mathbf{G})| + \sum_{i} |\Omega_{i}|$$

soit

$$0 \equiv |Z(G)| \mod p$$
.

Ceci montre que $|Z(G)| \neq 1$.

(ii) Soit G un groupe tel que $G_{Z(G)}$ soit cyclique. Montrons qu'alors G est abélien.

Par hypothèse il existe un élément a de G dont la classe $\overline{a} \in {}^{G}\!\!/_{Z(G)}$ engendre ${}^{G}\!\!/_{Z(G)}$. Tout élément de G peut alors s'écrire $a^k h$ avec $k \in \mathbb{Z}$ et $h \in Z(G)$. Puisque

$$a^{k}h \cdot a^{k'}h' = a^{k+k'}hh' = a^{k+k'}h'h = a^{k'}h'a^{k}h$$

le groupe G est aélien.

(3) Montrons que le groupe des matrices triangulaires supérieures unipotentes

$$G = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \in GL(3, \mathbb{F}_p) \right\}$$

est un groupe non-abélien d'ordre p^3 .

Chacun des coefficients * est un élément arbitraire de \mathbb{F}_p d'où p^3 choix possibles; de plus

$$\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) et \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right)$$

ne commutent pas d'où le résultat.

Exercice 12 Soit G un groupe fini d'ordre $|G| = p^a m$ avec p premier et $\operatorname{pgcd}(p, m) = 1$. Soient $S \subset G$ un p-Sylow et H un sous-groupe de G. Montrer qu'il existe $g \in G$ tel que $gSg^{-1} \cap H$ soit un p-Sylow de H.

Solution 12 On a $|G| = p^a m$ et $|H| = p^b n$. On fait agir G (et donc également H) par translation sur l'ensemble X des classes à gauche de G modulo S. Notons que $g' \in \operatorname{Stab}(gS)$ équivaut à $g' \in gSg^{-1}$. Par ailleurs l'ensemble X est de cardinal m qui n'est pas un multiple de p. L'une des orbites Ω de X sous l'action de H est donc de cardinal p^c pour un certain $c \leq b$. Mais comme de plus $|\operatorname{Stab}(x)| \cdot |\Omega| = |H| = p^b n$ et $\operatorname{pgcd}(|\Omega|, p) = 1$ on a finalement $|\Omega| = n$ et $|\operatorname{Stab}(x)| = p^b$ comme attendu.

Exercice 13

- (1) Soient k un corps et G un groupe fini. Montrer qu'il existe un entier n tel que G soit isomorphe à un sous-groupe de GL(n, k). [Indication : on pourra commencer par plonger G dans un groupe symétrique.]
- (2) Soit \mathbb{F}_p le corps à p éléments où p désigne un nombre premier. Montrer que le groupe des matrices triangulaires supérieures avec des 1 sur la diagonale est un p-Sylow de $GL(n, \mathbb{F}_p)$.

Solution 13

- (1) Tout groupe fini se plonge dans un groupe symétrique S_n en faisant agir G sur lui-même par translation ce qui montre que n = |G| convient. De plus le groupe symétrique S_n se plonge dans $GL(n, \mathbb{k})$ pour tout corps \mathbb{k} en faisant agir S_n sur les vecteurs d'une base de \mathbb{k}^n .
- (2) Le cardinal de $GL(n, \mathbb{F}_p)$ est (compter les base de $(\mathbb{F}_p)^n$

$$|\mathrm{GL}(n,\mathbb{F}_p)| = (p^n-1)(p^n-p)(p^n-p^2)\dots(p^n-p^{n-1}) = p^{1+2+\dots+(n-1)}m$$

avec pgcd(m, p) = 1. Or $p^{1+2+...+(n-1)}$ est le cardinal du groupe des matrices triangulaires unipotentes.

Exercice 14 Supposons qu'il existe un groupe simple G d'ordre 180.

- a) Montrer que G contient trente six 5-Sylow.
- b) Montrer que G contient dix 3-Sylow. Montrer que deux 3-Sylow distincts ne peuvent pas contenir un même élément $g \neq e_G$ (Indication : considérer les ordres possibles pour le centralisateur de g, observer qu'un groupe d'ordre 18 admet un unique 3-Sylow).
- c) Conclure.

Solution 14

a) Montrons que G contient trente six 5-Sylow. Pour tout premier p qui divise |G| notons n_p le nombre de p-Sylow de G. Les théorèmes de Sylow assurent que n_5 divise 36 et $n_5 \equiv 1 \pmod{5}$. Ceci implique que n_5 appartient à $\{1, 6, 36\}$. Puisque par hypothèse G est simple on ne peut avoir $n_5 = 1$ (sinon l'unique 5-Sylow serait distingué dans G). Il en résulte que n_5 appartient à $\{6, 36\}$. Supposons que $n_5 = 6$. Alors l'action transitive de G par conjugaison sur l'ensemble de ses 5-Sylow induit un morphisme non trivial $G \to \mathcal{S}_6$. Le groupe G étant par hypothèse simple, le noyau de ce morphisme est trivial, *i.e.* ce morphisme est injectif. Le morphisme $G \to \mathbb{Z}_{2\mathbb{Z}}$ donné par la signature a nécessairement un noyau trivial donc G est un sous-groupe de \mathcal{A}_6 . D'une part $|\mathcal{A}_6| = \frac{|\mathcal{S}_6|}{2} = \frac{6!}{2} = 360$, d'autre part |G| = 180, autrement dit G est d'indice 2 dans \mathcal{A}_6 . Le groupe G est donc un sous-groupe distingué non trivial et propre de \mathcal{A}_6 : contradiction avec le fait que \mathcal{A}_6 est simple. Par conséquent $n_5 = 36$.

b) Montrons que G contient dix 3-Sylow. Pour tout premier p qui divise |G| notons n_p le nombre de p-Sylow de G. Les théorèmes de Sylow assurent que n_3 divise 20 et $n_3 \equiv 1 \pmod{3}$. Ceci implique que n_3 appartient à $\{1, 4, 10\}$. Puisque par hypothèse G est simple on ne peut avoir $n_3 = 1$ (sinon l'unique 3-Sylow serait distingué dans G). Si n_3 était égal à 4, on en déduirait comme au a) un morphisme injectif de G dans \mathcal{S}_4 ce qui est impossible car $180 = |G| > |\mathcal{S}_4| = 4! = 24$. Ainsi $n_3 = 10$.

Montrons que deux 3-Sylow distincts ne peuvent pas contenir un même élément $g \neq e_G$.

Soient S et T deux 3-Sylow de G distincts. Soit $g \in S \cap T$. Notons $Z = \{x \in G \mid xg = gx\}$ le centralisateur de g dans G. Supposons que $g \neq e_G$. Un groupe d'ordre 9 étant abélien, Z contient S et T. Par conséquent $|Z| \in \{18, 36, 45, 90\}$. L'action transitive de G sur G/Z induit un morphisme injectif de G vers $S_{G/Z}$. Or

 $|\mathcal{G}|=180$ et $|\mathcal{S}_{\mathcal{G}_{/Z}}|\in\{2,4!=24,5!=120,10!\}$ donc $|\mathcal{S}_{\mathcal{G}_{/Z}}|=10!$ et |Z|=18. Ainsi S et T sont des 3-Sylow de Z et un groupe d'ordre 18 admet un unique 3-Sylow d'où S=T: contradiction. Finalement $S\cap T=\{e_{\mathcal{G}}\}$.

c) D'après a) le groupe G contient exactement $36 \times 4 = 144$ éléments d'ordre 5.

D'après b) le groupe G contient dix 3-Sylow dont les intersections deux à deux sont triviales. Par suite il y a dans G exactement $10 \times 8 = 80$ éléments distincts de $e_{\rm G}$ d'ordre divisant 9.

Ainsi G possède au moins 144 + 80 = 224 > 180 éléments distincts : contradiction.

Il n'existe donc pas de groupe simple d'ordre 180.

Exercice 15 Expliciter les sous-groupes de Sylow des groupes alternés A_4 et A_5 .

Solution 15 Déterminons les sous-groupes de Sylow de A_4 . Le groupe A_4 est d'ordre $12 = 2^2 \times 3$.

Les théorèmes de Sylow assurent que

- le nombre n_2 de sous-groupes d'ordre $2^2 = 4$ de \mathcal{A}_4 est 1 ou 3;
- le nombre n_3 de sous-groupes d'ordre 3 de \mathcal{A}_4 est 1 ou 4.

Le groupe \mathcal{A}_4 ne contient pas de cycle de longueur 4 donc les seuls éléments d'ordre pair sont les doubles transpositions. Il y en a trois ainsi \mathcal{A}_4 contient un seul sous-groupe d'ordre 4, isomorphe au groupe de Klein $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$.

Le groupe A_4 contient les cycles de longueur 3. Il y en a plus de deux donc $n_3 = 4$.

Déterminons les sous-groupes de Sylow de A_5 . Le groupe A_5 est d'ordre $60 = 2^2 \times 3 \times 5$.

Les 3-Sylow de \mathcal{A}_5 sont d'ordre 3, donc cycliques; chacun est engendré par un 3-cycle et contient deux 3-cycles. Les 3-Sylow sont deux à deux d'intersection réduite à $\{e\}$. Comme il y a vingt 3-cycles dans \mathcal{A}_5 , il y a dix 3-Sylow.

On peut aussi utiliser les théorèmes de Sylow : le nombre de 3-Sylow est $\equiv 1 \pmod{3}$ et divise 20 ; c'est donc 1, 4 ou 10. Puisque \mathcal{A}_5 est simple il ne peut y avoir qu'un seul 5-Sylow. Si c'est 4 l'action par conjugaison de \mathcal{A}_5 sur l'ensemble de ses 3-Sylow induit un morphisme de \mathcal{A}_5 dans \mathcal{S}_4 qui est non trivial (car l'action par conjugaison est transitive) et donc injectif (car le noyau distingué est forcément trivial puisque \mathcal{A}_5 est simple) : contradiction avec le fait que l'ordre de \mathcal{A}_5 ne divise par celui de \mathcal{S}_4 .

Les 5-Sylow de \mathcal{A}_5 sont d'ordre 5, donc cycliques; chacun est engendré par un 5-cycle et contient quatre 5-cycles. Les 5-Sylow sont deux à deux d'intersection réduite à $\{1\}$. Comme il y a vingt-quatre 5-cycles dans \mathcal{A}_5 , il y a six 5-Sylow.

On peut aussi utiliser les théorèmes de Sylow : le nombre de 5-Sylow est $\equiv 1 \pmod{5}$ et divise 12 ; c'est donc 1 ou 6. Puisque \mathcal{A}_5 est simple il ne peut y avoir qu'un seul 3-Sylow. Par conséquent le nombre de 5-Sylow est 6.

On a donc déterminé $6 \times 4 = 24$ éléments d'ordre 5 et $2 \times 10 = 20$ éléments d'ordre 3 ce qui fait, en ajoutant l'identité, 45 éléments de \mathcal{A}_5 .

Soit n_2 le nombre de 2-Sylow, *i.e.* le nombre de sous-groupes d'ordre 4 de \mathcal{A}_5 . Rappelons qu'un groupe d'ordre 4 est soit cyclique, soit isomorphe à $\mathbb{Z}/_{2\mathbb{Z}} \times \mathbb{Z}/_{2\mathbb{Z}}$. Le groupe \mathcal{A}_5 ne contient par d'élément d'ordre 4. En effet les éléments d'ordre 4 du groupe symétrique \mathcal{S}_5

Le groupe \mathcal{A}_5 ne contient par d'élément d'ordre 4. En effet les éléments d'ordre 4 du groupe symétrique \mathcal{S}_5 sont les 4-cycles qui sont des permutations impaires. Par suite chaque 2-Sylow est isomorphe à $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$; il est engendré par deux produits de deux transpositions qui commutent et contient trois éléments d'ordre 2. Les trois éléments d'ordre 2 sont les trois produits de deux transpositions qui commutent qu'on peut former avec quatre éléments de $\{1, 2, 3, 4, 5\}$. On en déduit que les 2-Sylow sont deux à deux d'intersection réduite à $\{e\}$. Il y a 15 éléments d'ordre 2 dans \mathcal{A}_5 et cinq 2-Sylow.

les sous-groupes d'ordre 4 de \mathcal{A}_5 sont engendrés par les paires de transpositions disjointes : on a 5 paires de transpositions distinctes (elles sont déterminées par le seul élément de $\{1, 2, 3, 4, 5\}$ qui reste fixe par la double transposition) qui engendrent des sous-groupes distincts. Cela fait donc déjà cinq 2-Sylow isomorphes à $\mathbb{Z}_{2\mathbb{Z}_+} \times \mathbb{Z}_{2\mathbb{Z}_-}$.

Par ailleurs $n_2 \equiv 1 \pmod{2}$ et n_2 divise 15 donc n_2 appartient à $\{1, 3, 5, 15\}$. En utilisant ce qui précède on se ramène à $n_2 \in \{5, 15\}$. De plus il y a au plus 60 - 45 - 1 = 14 éléments d'ordre 2. Finalement $n_2 = 5$.

Exercice 16 Expliciter les sous-groupes de Sylow des groupes diédraux D₈ et D₁₀.

Solution 16

- i) Déterminons les sous-groupes de Sylow du groupe D_8 . Le groupe D_8 est d'ordre $2^3 = 8$. Les 2-Sylow sont d'ordre 2^3 , il n'y en a donc qu'un, c'est D_8 .
- ii) Déterminons les sous-groupes de Sylow du groupe D_{10} . Le groupe D_{10} est le groupe des isométries du plan qui conservent un pentagone régulier, il est d'ordre $2 \times 5 = 10$.

Soit n_2 le nombre de ses 2-Sylow, *i.e.* le nombre de ses sous-groupes d'ordre 2. D'après les théorèmes de Sylow $n_2 \equiv 1 \pmod{2}$ et n_2 divise 5. Ainsi $n_2 \in \{1, 5\}$. Par ailleurs les sous-groupes de D_{10} engendrés par les cinq symétries par rapport aux médiatrices de chacun des côtés du pentagone sont cinq groupes d'ordre 2. Il s'en suit que $n_2 = 5$.

Soit n_5 le nombre de 5-Sylow de D_{10} , *i.e.* le nombre de sous-groupes d'ordre 5 de D_{10} . Les théorèmes de Sylow assurent que $n_5 \equiv 1 \pmod{2}$ et n_5 divise 2. Il n'y a donc qu'un unique 5-Sylow, le sous-groupe engendré par la rotation d'angle $\frac{2\pi}{5}$ dont le centre est le centre du pentagone.

Exercice 17

- a) Quel est l'ordre d'un p-Sylow de S_p ?
- b) Combien y a-t-il de p-Sylow dans S_p ?
- c) En déduire le théorème de Wilson, c'est à dire

$$(p-1)! \equiv -1 \mod p$$
.

Solution 17

- a) L'ordre de S_p est p! = p(p-1)!. De plus p et (p-1)! sont premiers entre eux. Par suite un p-Sylow de S_p est d'ordre p.
- b) Pour déterminer le nombre de p-Sylow de S_p on cherche combien il y a d'éléments d'ordre p de S_p . Ce sont les p-cycles qui sont conjugués entre eux. Pour calculer leur nombre il suffit de calculer l'ordre du centralisateur C de l'un d'eux, par exemple du p-cycle $\sigma = (1 \ 2 \ \dots \ p)$. Si s est une permutation, alors

$$s\sigma s^{-1} = (s(1) \ s(2) \ \dots \ s(p))$$

Donc $s \in C$ si

$$(\sigma(1) \ \sigma(2) \ \dots \ \sigma(p)) = (s(1) \ s(2) \ \dots \ s(p))$$

c'est-à-dire si s est une puissance de la permutation circulaire d'ordre p. L'ordre de C est donc égal à p et il y a $\frac{p!}{p} = (p-1)!$ éléments d'ordre p dans \mathcal{S}_p car $\mathcal{S}_{p/C}$ est en bijection avec les conjugués de σ .

Ces éléments d'ordre p se répartissent entre $\frac{(p-1)!}{p-1} = (p-2)!$ p-Sylow de S_p qui contiennent chacun (p-1) éléments d'ordre p.

Autre rédaction possible : un p-Sylow est d'ordre p, p étant premier, un p-Sylow est donc un sous-groupe cyclique d'ordre p. Il y a (p-1)! p-cycles dans S_p donc $\frac{(p-1)!}{p-1} = (p-2)!$ p-Sylow.

c) Notons n_p le nombre de p-Sylow. D'après b) on a $n_p = (p-2)!$. D'après les théorèmes de Sylow $n_p \equiv 1 \mod p$. Donc $(p-2)! \equiv 1 \mod p$ et $(p-1)! \equiv p-1 \mod p$. Mais $p-1 \equiv -1 \mod p$. Il en résulte que $(p-1)! \equiv -1 \mod p$.

Exercice 18 On cherche à montrer que A_5 est le seul groupe simple d'ordre 60.

- a) Faire la liste des éléments de A_5 avec leur ordre respectif. Décrire les classes de conjugaison dans A_5 .
- b) Montrer que A_5 est simple.

- c) Soit G un groupe simple d'ordre $p^{\alpha}m$ avec $\alpha \geqslant 1$ et m non divisible par p. Notons n_p le nombre de p-Sylow de G. Montrer que |G| divise $n_p!$.
- d) Soit G un groupe simple d'ordre 60. Montrer que le nombre de 2-Sylow de G est égal à 5 ou à 15.
- e) En déduire que G contient un sous-groupe d'ordre 12.
- f) Conclure.

Solution 18

- a) Faisons la liste des éléments de \mathcal{A}_5 avec leur ordre respectif.
 - Les 60 éléments de A_5 sont les suivants :
 - l'identité d'ordre 1 qui forme une classe de conjugaison ;
 - les double transpositions $(a\ b)(c\ d)$ où $\{a,\ b,\ c,\ d\}$ est de cardinal 4. Elles sont au nombre de 15, elles sont d'ordre 2 et elles forment une classe de conjugaison;
 - les 3-cycles $(a\ b\ c)$ où $\{a,\ b,\ c\}$ est de cardinal 3. Ils sont au nombre de 20, ils sont d'ordre 3 et forment une classe de conjugaison;
 - les 5-cycles $(a\ b\ c\ d\ e)$ où $\{a,\ b,\ c,\ d,\ e\}$ est de cardinal 5. Ils sont au nombre de 24, ils sont d'ordre 5 et forment deux classes de conjugaison : celle de $(1\ 2\ 3\ 4\ 5)$ et $(2\ 1\ 3\ 4\ 5)$.

Nous avons bien énuméré tous les éléments de A_5 : 1 + 15 + 20 + 24 = 60.

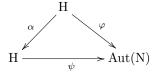
- b) Montrons que \mathcal{A}_5 est simple. Soit $H \neq \{e\}$ un sous-groupe distingué de \mathcal{A}_5 . Puisque H est distingué, H est réunion de classes de conjugaison dans \mathcal{A}_5 . Comme aucun des entiers 1+15=16, 1+12=13, 1+24=25, 1+15+12=28, 1+15+24=40, 1+20=21, 1+20+15=36, 1+20+12=33, 1+20+24=45 ne divise $60=|\mathcal{A}_5|$, le théorème de Lagrange assure que H contient nécessairement toutes les classes de conjugaison de \mathcal{A}_5 , donc $H=\mathcal{A}_5$.
- c) Regardons l'action transitive de G par conjugaison sur l'ensemble Syl_p de ses p-Sylow. Comme G est simple $n_p > 1$. On obtient donc un morphisme non trivial $G \to \mathcal{S}_{\operatorname{Syl}_p} \simeq \mathcal{S}_{n_p}$. Puisque G est simple ce morphisme est injectif. Il en résulte que |G| divise $|\mathcal{S}_{n_p}| = n_p!$.
- d) Soit G un groupe simple d'ordre 60. Montrons que le nombre de 2-Sylow de G est égal à 5 ou à 15. Soit n_2 le nombre de 2-Sylow. Les théorèmes de Sylow assurent que n_2 est impair et divise 15; par suite n_2 appartient à $\{1, 3, 5, 15\}$. Le groupe G étant simple, $n_2 \neq 1$, *i.e.* n_2 appartient à $\{3, 5, 15\}$. Le groupe G est d'ordre $2^2 \cdot 15$; d'après le c) |G| divise $n_2!$ donc $n_2 \neq 3$. Ainsi n_2 vaut 5 ou 15.
- e) Montrons que G contient un sous-groupe d'ordre 12.

Supposons dans un premier temps que $n_2=5$; alors le normalisateur d'un 2-Sylow de G est de cardinal 60/5=12 d'où le résultat.

Supposons désormais que $n_2=15$. Montrons qu'il existe deux 2-Sylow distincts S et T tels que $|S\cap T|=2$. Sinon on aurait exactement $15\cdot 3+1=46$ éléments d'ordre divisant 4. De plus les théorèmes de Sylow assurent que $n_5=6$ donc que G contient $6\cdot 4=24$ éléments d'ordre 5. Ainsi d'une part G contient au moins 46+24=70 éléments et d'autre par |G|=60: contradiction. On dispose donc de deux 2-Sylow distincts S et T tels que $S\cap T=\{e,g\}$ avec g d'ordre 2. Désignons par H le centralisateur de g dans G. Alors H contient S et T donc son cardinal est multiple de 4 et >6. Ainsi |H| appartient à $\{12,20,60\}$. Si |H|=20, alors l'action transitive de G sur GH induit un morphisme injectif $G\to S_{G/H}\simeq S_3$: contradiction. Si |H|=60, alors g est dans le centre de G ce qui assure que le centre Z(G) de G est non trivial: contradiction avec le fait que G est simple. Il s'en suit que |H|=12.

f) Soit H le sous-groupe de G d'ordre 12 construit au e). L'action transitive de G sur ${}^{G}/{}_{H}$ induit un morphisme injectif $\varphi \colon G \to \mathcal{S}_{G/H} \simeq \mathcal{S}_{5}$. Ainsi G est isomorphe à un sous-groupe d'ordre 60 de \mathcal{S}_{5} qui est nécessairement \mathcal{A}_{5} .

Exercice 19 Rappelons l'énoncé suivant dont nous aurons besoin : Soient H et N deux groupes. Soient φ et ψ deux opérations de H sur N et α un automorphisme de H tels que le diagramme suivant commute



i.e. $\varphi = \psi \circ \alpha$.

L'application $(n,h) \mapsto (n,\alpha(h))$ est un isomorphisme de $\mathbb{N} \rtimes_{\psi} \mathbb{H}$ sur $\mathbb{N} \rtimes_{\varphi} \mathbb{H}$.

Soient p et q des nombres premiers avec p < q. Montrer que

- 1. Si p ne divise pas q-1, alors tout groupe d'ordre pq est cyclique.
- 2. Si p divise q-1, alors il y a deux groupes d'ordre pq non isomorphes : le groupe cyclique et un produit semi-direct non abélien.

Indication : Aut $(\mathbb{Z}/_{q\mathbb{Z}}) \simeq \mathbb{Z}/_{(q-1)\mathbb{Z}}$ ([Perrin, Cours d'algèbre, p. 24])

Solution 19

Soit G un groupe d'ordre pq où p et q désignent des nombres premiers tels que p < q. Soit Q un q-Sylow de G.

D'après les théorèmes de Sylow

$$\left\{ \begin{array}{l} n_q \text{ divise } p \\ n_q \equiv 1 \bmod q \end{array} \right.$$

où n_q est le nombre de q-Sylow de G. Par suite $n_q=1$ et Q est distingué dans G. Puique p est premier, $\mathbb{Q}\simeq \mathbb{Z}/_{q\mathbb{Z}}$. De même $G/_{\mathbb{Q}}\simeq \mathbb{Z}/_{p\mathbb{Z}}$. Si P est un p-Sylow quelconque il fournit un relèvement de ^G/_O et donc

$$G \simeq \mathbb{Z}/_{q\mathbb{Z}} \times \mathbb{Z}/_{p\mathbb{Z}}.$$

Calculons ces produits. On a $\operatorname{Aut}\left(\mathbb{Z}/_{q\mathbb{Z}}\right)\simeq\mathbb{Z}/_{(q-1)\mathbb{Z}}$. L'opération de $\mathbb{Z}/_{p\mathbb{Z}}$ sur $\mathbb{Z}/_{q\mathbb{Z}}$ correspond donc à un morphisme

 $\varphi \colon \mathbb{Z}/p\mathbb{Z} \to \mathbb{Z}/(q-1)\mathbb{Z}$

On a l'alternative suivante :

- p ne divise pas q-1, alors φ est trivial, le produit est direct et $G \simeq \mathbb{Z}/pq\mathbb{Z}$ est cyclique.
- p divise $q-1, \mathbb{Z}/(q-1)\mathbb{Z}$ possède un unique sous-groupe d'ordre p, il y a donc une opération non triviale. De plus deux telles opérations diffèrent d'un automorphisme de $\mathbb{Z}_{p\mathbb{Z}}$. L'énoncé rappelé assure que les produits correspondants sont isomorphes.

Exercice 20

Soit $n \ge 1$. On note $\operatorname{Int}(\mathcal{S}_n)$ le sous-groupe des automorphismes intérieurs de $\operatorname{Aut}(\mathcal{S}_n)$.

- a) Soit $\phi \in Aut(\mathcal{S}_n)$ tel que ϕ transforme toute transposition en une transposition. Montrer que ϕ est intérieur.
- b) Soit $\sigma \in \mathcal{S}_n$. Déterminer le cardinal du commutant

$$Z(\sigma) = \left\{ \tau \in \mathcal{S}_n \,|\, \tau \sigma \tau^{-1} = \sigma \right\}$$

de σ .

- c) En déduire que si $n \neq 6$, on a $Int(\mathcal{S}_n) = Aut(\mathcal{S}_n)$.
- d) Soit $n \ge 5$ tel que $\operatorname{Int}(\mathcal{S}^n) = \operatorname{Aut}(\mathcal{S}_n)$. Montrer que tous les sous-groupes d'indice n de \mathcal{S}_n sont conjugués.
- e) En utilisant les 5-Sylow de S_5 montrer qu'il existe un sous-groupe H d'indice 6 de S_6 opérant transitivement sur $\{1, 2, \ldots, 6\}$.
- f) Soit q une puissance d'un nombre premier et $n \ge 2$. Construire un morphisme de groupes injectif canonique $\operatorname{PGL}_n(\mathbb{F}_q) \to \mathcal{S}_N \text{ avec } N = \frac{q^n - 1}{q - 1}.$
- g) Construire géométriquement un sous-groupe H' d'indice 6 dans \mathcal{S}_6 opérant transitivement sur $\{1, 2, \ldots, 6\}$.
- h) En déduire que $\operatorname{Aut}(\mathcal{S}_6) \neq \operatorname{Int}(\mathcal{S}_6)$.

Solution 20

a) Soit $\phi \in \text{Aut}(\mathcal{S}_n)$ tel que ϕ transforme toute transposition en une transposition.

Montrons que ϕ est intérieur.

Puisque tout automorphisme de S_i est intérieur dès que $i \leq 3$ (à vérifier) on peut supposer que $n \geq 4$. Le groupe symétrique est engendré par les transpositions $\tau_i = (1 \ i)$ pour $i \geqslant 2$. Comme τ_i et τ_j ne commutent pas si $i \neq j$ les supports des transpositions $\varphi(\tau_i)$ et $\varphi(\tau_i)$ ont exactement un point en commun noté α_1 . Puisque $\varphi(\tau_i)$ a un point commun avec $\varphi(\tau_1)$, $\varphi(\tau_2)$ et $\varphi(\tau_3)$ ils ont nécessairement tous α_1 en commun. Écrivons $\varphi(\tau_i) = (\alpha_1 \ \alpha_i)$. L'application φ étant injective $\{\alpha_1, \alpha_2, \ldots, \alpha_n\} = \{1, 2, \ldots, n\}$. Définissons la permutation $\alpha \in \mathcal{S}_n$ par $\alpha(i) = \alpha_i$ pour tout $1 \le i \le n$. Ainsi φ est la conjugaison par α et φ appartient à $\operatorname{Int}(\mathcal{S}_n)$.

b) Soit $\sigma \in \mathcal{S}_n$. Déterminons le cardinal du commutant

$$Z(\sigma) = \left\{ \tau \in \mathcal{S}_n \,|\, \tau \sigma \tau^{-1} = \sigma \right\}$$

de σ . Décomposons σ en produit de cycles à supports disjoints, k_1 cycles de longueur $1, \ldots, k_n$ cycles de longueur n, avec $n = \sum_i i k_i$. Un élément qui commute à σ doit préserver la décomposition en cycles de

 σ et donc envoyer le support d'un k-cycle sur celui d'un autre k-cycle, en respectant l'ordre cyclique du support de ces cycles pour tout k. Ainsi le commutant d'un n-cycle de S_n est composé des puissances de ce dernier. Finalement on obtient

$$|Z(\sigma)| = \prod_{i} k_i! i^{k_i}.$$

- c) Montrons que si $n \neq 6$, on a $\operatorname{Int}(\mathcal{S}_n) = \operatorname{Aut}(\mathcal{S}_n)$. Soit φ un automorphisme de \mathcal{S}_n . Si τ est une transposition de \mathcal{S}_n , alors $\varphi(\tau)$ est aussi d'ordre 2 et est donc un produit de k transpositions à supports disjoints. On a $|Z(\tau)| = |Z(\varphi(\tau))|$ ce qui se réécrit $2(n-2)! = 2^k k! (n-2k)!$. Puisque $n \neq 6$ on a k = 1. D'après a) φ est donc intérieur.
- d) Soit $n \ge 5$ tel que $\operatorname{Int}(\mathcal{S}^n) = \operatorname{Aut}(\mathcal{S}_n)$. Montrons que tous les sous-groupes d'indice n de \mathcal{S}_n sont conjugués. Soit H un sous-groupe d'indice n de \mathcal{S}_n . L'action transitive de \mathcal{S}_n sur $\mathcal{S}_n/_{\mathbf{H}}$ induit un morphisme de groupes

$$\phi \colon \mathcal{S}_n \to \mathcal{S}_{\mathcal{S}_{n/H}} \simeq \mathcal{S}_n.$$

Puisque ker ϕ est un sous-groupe distingué de \mathcal{S}_n , ker $\phi \in \{\{\text{id}\}, \mathcal{A}_n, \mathcal{S}_n\}$. Le groupe ker ϕ agit trivialement sur la classe de H dans $\mathcal{S}_{n/H}$, d'où ker $\phi \subset H$. Il en résulte que ker $\phi = \{\text{id}\}$, *i.e.* que ϕ est injective. Ainsi φ appartient à $\text{Aut}(\mathcal{S}_n)$. Par hypothèse il existe une permutation σ telle que ϕ soit la conjugaison par σ . Or par construction ϕ envoie H sur le stabilisateur d'un point (la classe de H) dans $\mathcal{S}_{\mathcal{S}_{n/H}} \simeq \mathcal{S}_n$. Enfin dans \mathcal{S}_n les stabilisateurs d'un point de $\{1, 2, \ldots, n\}$ sont tous conjugués.

e) En utilisant les 5-Sylow de S_5 montrons qu'il existe un sous-groupe H d'indice 6 de S_6 opérant transitivement sur $\{1, 2, ..., 6\}$. Les théorèmes de Sylow assurent que S_5 admet un ou six 5-Sylow. Comme A_5 est simple S_5 n'admet pas de sous-groupe distingué d'ordre 5 et S_5 admet exactement six 5-Sylow. Notons Xl'ensemble des 5-Sylow de S_5 . L'action de S_5 sur S_5 par conjugaison est transitive et induit un morphisme de groupes

$$\mu \colon \mathcal{S}_5 \to \mathcal{S}_X \simeq \mathcal{S}_6$$

dont le noyau est trivial (les sous-groupes distingués de S_5 sont {id}, A_5 et S_5). Le groupe $H = \mu(S_5) \subset S_6$ est un sous-groupe d'indice 6 de S_6 opérant transitivement sur $\{1, 2, ..., 6\}$.

f) Preuve géométrique, par récurrence sur n: l'espace projectif $\mathbb{P}^{n-1}(\mathbb{k})$ est réunion disjointe d'un espace affine de dimension n-1 sur \mathbb{k} (disons \mathbb{k}^n) et d'un hyperplan projectif de dimension n-2, *i.e.* isomorphe à un $\mathbb{P}^{n-2}(\mathbb{k})$, appelé hyperplan à l'infini. On a donc $\mathbb{P}^{n-1}(\mathbb{k}) = \mathbb{k}^{-1} \sqcup \mathbb{P}^{n-2}(\mathbb{k})$. On en déduit par récurrence la formule suivante

$$|\mathbb{P}^{n-1}(\mathbb{F}_q)| = q^{n-1} + q^{n-2} + \ldots + q + 1.$$

Autre preuve : le groupe $\mathrm{PGL}(\mathbb{F}_q^n)$ agit fidèlement sur $\mathbb{P}(\mathbb{F}_q^n)$ d'où le morphisme de groupes injectif

$$\varphi \colon \mathrm{PGL}(\mathbb{F}_q^n) \to \mathcal{S}_{\mathbb{P}^{n-1}(\mathbb{F}_q)}$$

Or par définition on a $\mathbb{P}^{n-1}(\mathbb{F}_q) = \mathbb{F}_q^n \setminus \{0\}_{\mathbb{F}_q^*}$ donc $|\mathbb{P}^{n-1}(\mathbb{F}_q)| = \frac{|\mathbb{F}_q^n|}{|\mathbb{F}_q^*|} = \frac{q^n-1}{q-1}$. Par conséquent il existe un morphisme de groupes injectif

$$\varphi \colon \mathrm{PGL}(\mathbb{F}_q^n) \to \mathcal{S}_{\mathbb{P}^{n-1}(\mathbb{F}_q)}$$

- g) Construisons géométriquement un sous-groupe H' d'indice 6 dans \mathcal{S}_6 opérant transitivement sur $\{1, 2, \ldots, 6\}$. Le groupe H' = PGL $(2, \mathbb{F}_5)$ vu comme sous-groupe de \mathcal{S}_6 par action sur $\mathbb{P}^1(\mathbb{F}_5)$ n'est pas conjugué à $\mathcal{S}_5 = \operatorname{Stab}(6) \subset \mathcal{S}_6$ puisqu'il ne fixe aucun point.
- h) Montrons que $Aut(S_6) \neq Int(S_6)$.

Les d), e) et g) assurent que le groupe S_6 possède au moins un automorphisme extérieur.

Exercice 21 [Simplicité de A_n , $g \ge 5$, version 2]

a) Montrer que le groupe A_5 est simple.

- b) Soit $n \ge 3$. Montrer que les 3-cycles engendrent \mathcal{A}_n .
- c) Montrer que A_n est simple dès que $n \ge 5$.
- d) Montrer que A_4 n'est pas simple.
- e) Soit $n \ge 3$. Soient a, b dans $\{1, 2, ..., n\}$ et $\sigma \in \mathcal{S}_n$. Montrer que

$$\sigma \circ (a \ b) \circ \sigma^{-1} = (\sigma(a) \ \sigma(b))$$

- f) Soit $n \ge 3$. Montrer que le centre de S_n est réduit à {id}.
- g) Soit $n \ge 5$. Montrer que les sous-groupes distingués de \mathcal{S}_n sont $\{id\}$, \mathcal{A}_n et \mathcal{S}_n .

Solution 21

- a) Le groupe A_5 a 60 éléments :
 - le neutre;
 - 15 éléments d'ordre 2 (produit de deux transpositions disjointes);
 - 20 éléments d'ordre 3 (3-cycles);
 - 24 éléments d'ordre 5 (5-cycles).

Les 3-cycles sont conjugués dans \mathcal{A}_5 ¹. Les éléments d'ordre 2 le sont aussi : si $\tau = (a\ b)(c\ d)(e)$ et $\tau' = (a'\ b')(c'\ d')(e')$ on définit $\sigma \in \mathcal{A}_n$ tel que $\sigma(a) = a', \ \sigma(b) = b'$ et $\sigma(e) = e'$ alors $\sigma\tau\sigma^{-1} = \tau'$.

Soit H un sous-groupe distingué non trivial de A_5 . Si H contient un élément d'ordre 3 (resp. 2), alors il les contient tous d'après ce qui précède. Si H contient un élément d'ordre 5, il contient le 5-Sylow engendré par cet élément donc tous les 5-sous-groupes de Sylow puisqu'ils sont conjugués ainsi tous les éléments d'ordre 5.

Le groupe H ne peut pas contenir un seul des trois types d'éléments précédents en plus du neutre car ni 25 = 24 + 1, ni 21 = 20 + 1, ni 16 = 15 + 1 ne divisent 60 (rappel : |H| divise $|\mathcal{A}_5| = 60$). Par conséquent H contient au moins deux des trois types d'où

$$|H| \ge 15 + 20 + 1 + 36.$$

Comme |H| divise $|A_5| = 60$ on obtient |H| = 60 et H = A_5 .

b) Puisque le groupe S_n est engendré par les produits de transpositions, le groupe A_n est engendré par les produits pairs de transpositions et on a

$$(a\ b)(b\ c) = (a\ b\ c)$$

$$(a b)(a c) = (a c b)$$

(notons au passage que tous les 3-cycles sont dans A_n) et

$$(a\ b)(c\ d) = (a\ b)(a\ c)(a\ c)(c\ d) = (a\ c\ b)(a\ c\ d)$$

c) Posons $E = \{1, 2, ..., n\}$. Soit $\{id\} \neq H \triangleleft A_n$. Soit $\sigma \in H \setminus \{id\}$. On se ramène au cas n = 5; pour ce faire on va fabriquer à partir de σ un élément non trivial de H qui n'agit que sur un ensemble à 5 éléments donc qui a n - 5 points fixes.

Comme $\sigma \neq id$ il existe $a \in E$ tel que $b = \sigma(a) \neq a$. Soit $c \in E$ tel que $c \notin \{a, b, \sigma(b)\}$ (un tel c existe puisque $n \geqslant 5$). Soit τ le 3-cycle donné par $\tau = (a \ c \ b)$. Alors $\tau^{-1} = (a \ b \ c)$. Considérons ρ défini par

$$\rho = \tau \sigma \tau^{-1} \sigma^{-1} = (a \ c \ b)(\sigma(a) \ \sigma(b) \ \sigma(c)).$$

Comme $b = \sigma(a)$ l'ensemble $F = \{a, b, \sigma(a), \sigma(b), \sigma(c)\}$ a au plus 5 éléments et $\rho(F) = F$, $\rho_{|E \setminus F} = \operatorname{id}_{|E \setminus F}$. Quitte à ajouter au besoin des éléments à F on peut supposer que |F| = 5. Notons que $\rho(b) = \tau(\sigma(b)) \neq b$ (en effet $\sigma(b) \neq \tau^{-1}(b) = c$) donc $\rho \neq \operatorname{id}$.

Considérons $\mathcal{A}(F)$ l'ensemble des permutations paires de F. Il satisfait les deux propriétés suivantes

$$\{1, 2, \ldots, 5\} = \{a_1, a_2, \ldots, a_5\} = \{b_1, b_2, \ldots, b_5\}$$

et considérons $\sigma \in S_5$ telle que $\sigma(a_i) = b_i$ pour tout i = 1, 2, ..., 5; si σ est paire c'est terminé, sinon nous composons σ avec la transposition $(a_4 \ a_5)$.

Soient $\sigma = (a_1 \ a_2 \ a_3), \ \tau = (b_1 \ b_2 \ b_3)$; d'après ce qui précède il existe φ dans A_5 tel que $\varphi(a_i) = b_i$. Alors $\tau = \varphi \sigma \varphi^{-1}$

^{1.} Le groupe A_5 est 3 fois transitif sur $\{1, 2, \ldots, 5\}$, *i.e.* si a_1, a_2, a_3 sont distincts et b_1, b_2, b_3 sont distincts il existe $\sigma \in A_5$ tel que $\sigma(a_i) = b_i$. En effet écrivons

— $\mathcal{A}(F)$ est isomorphe à \mathcal{A}_5 ;

— $\mathcal{A}(F)$ se plonge dans \mathcal{A}_n via $u \mapsto \overline{u}$ où

$$\left\{ \begin{array}{l} \overline{u}_{|F} = u \\ \overline{u}_{|E \setminus F} = \mathrm{id}_{|E \setminus F} \end{array} \right.$$

Soit $H_0 = \{u \in \mathcal{A}(F) \mid \overline{u} \in \mathcal{H}\} = \mathcal{H} \cap \mathcal{A}(F)$. Alors

- $H_0 \triangleleft \mathcal{A}(F)$;
- $--\rho_{|F}\in \mathbf{H}_0$;
- $-\rho_{|F} \neq \mathrm{id}_F$.

Comme $\mathcal{A}(F) \not\simeq \mathcal{A}_5$ est simple on a $H_0 = \mathcal{A}(F)$. Soit alors $u \in \mathcal{A}(F)$ un 3-cycle. Il appartient à H_0 donc \overline{u} qui est encore un 3-cycle appartient à H. Mais comme les 3-cycles sont tous conjugués dans \mathcal{A}_n ils appartiennent tous à H et puisqu'ils engendrent \mathcal{A}_n (cf b)) on a $H = \mathcal{A}_n$.

d) Le groupe A_4 n'est pas simple car

$$\{id, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$$

est un sous-groupe distingué de A_4 d'ordre 4.

- e) Calcul direct.
- f) Soit σ un élément du centre de S_n . En particulier $\sigma \circ (1\ 2) = (1\ 2) \circ \sigma$, *i.e.* $\sigma \circ (1\ 2) \circ \sigma^{-1} = (1\ 2)$. Par suite d'après e)

$$(\sigma(1) \ \sigma(2)) = (1 \ 2).$$

Ainsi nécessairement $\sigma(1) = 1$ ou $\sigma(1) = 2$. De même $\sigma \circ (1\ 3) = (1\ 3) \circ \sigma$ et donc

$$(\sigma(1) \ \sigma(3)) = (1 \ 3).$$

Il en résulte que $\sigma(1) = 1$. Ce qu'on a fait avec 1 peut être fait avec n'importe quel entier compris entre 2 et n. Il en résulte que $\sigma = id$.

Réciproquement id commute avec toutes les permutations.

g) Soit $H \triangleleft S_n$. Alors $H \cap A_n \triangleleft A_n$ donc $H \cap A_n \in \{id, A_n\}$.

Si $H \cap A_n = A_n$, alors $H = A_n$ ou $H = S_n$.

Si $H \cap \mathcal{A}_n = \{id\}$, alors la signature ε induit un isomorphisme de H sur $\varepsilon(H) \subset \{1, -1\}$. Par suite $|H| \leq 2$. Si |H| = 2, alors $H = \{id, \sigma\}$. Mais si $\tau \in \mathcal{S}_n$ comme $\tau \sigma \tau^{-1}$ appartient à H et $\tau \sigma \tau^{-1} \neq id$ on a $\tau \sigma \tau^{-1} = \sigma$. Autrement dit σ appartient au centre de \mathcal{S}_n d'où $\sigma = id$ (f)) : contradiction. Il en résulte que $H = \{id\}$.

$$\{1, 2, \ldots, n\} = \{a_1, a_2, \ldots, a_{n-2}, a_{n-1}, a_n\} = \{b_1, b_2, \ldots, b_{n-2}, b_{n-1}, b_n\}$$

^{2.} Le groupe A_n est (n-2) fois transitif sur $\{1, 2, \ldots, n\}$, *i.e.* si $a_1, a_2, \ldots, a_{n-2}$ sont distincts et b_1, b_2, b_{n-2} sont distincts il existe $\sigma \in A_n$ tel que $\sigma(a_i) = b_i$. En effet écrivons

et considérons $\sigma \in \mathcal{S}_n$ telle que $\sigma(a_i) = b_i$ pour tout i = 1, 2, ..., n; si σ est paire c'est terminé, sinon nous composons σ avec la transposition $(a_{n-1} \ a_n)$.

Soient $\sigma = (a_1 \ a_2 \ a_3), \ \tau = (b_1 \ b_2 \ \dots \ b_3)$; d'après ce qui précède il existe φ dans \mathcal{A}_n tel que $\varphi(a_i) = b_i$. Alors $\tau = \varphi \sigma \varphi^{-1}$