Éléments de correction du premier devoir surveillé

Soit G un groupe opérant sur un ensemble E. On note pour $g \in G$ et $x \in E$ l'action de g sur x par : $g \cdot x$.

1. Montrons que pour tout x dans le E le stabilisateur

$$Stab_{G}(x) = G_{x} = \{g \in G \mid g \cdot x = x\}$$

de x est un sous-groupe de G.

Soit x dans E. Par définition d'une action $e \cdot x = x$ ce qui conduit à $e \in G_x$.

Si g et g' appartiennent à G_x nous avons

$$(gg') \cdot x = g \cdot (g' \cdot x) = g \cdot x = x$$

donc gg' appartient à G_x .

Enfin si g appartient à G_x , alors $x = g \cdot x$ et en faisant agir g^{-1} de part et d'autre de l'égalité nous obtenons

$$g^{-1} \cdot x = g^{-1} \cdot (g \cdot x) = (g^{-1}g) \cdot x = e \cdot x = x$$

ce qui montre que g^{-1} appartient à G_x .

En conclusion G_x est un sous-groupe de G.

Soit maintenant $n \in \mathbb{N}$, $n \geq 2$. Notons G le groupe orthogonal $(O(n, \mathbb{R}), \circ)$. Posons

$$\forall f \in G, \ \forall v \in \mathbb{R}^n \qquad f \cdot v = f(v).$$

Désignons par $C_n = (e_1, e_2, \ldots, e_n)$ la base canonique de \mathbb{R}^n .

2. Montrons que

$$G \times \mathbb{R}^n \to \mathbb{R}^n$$
 $(f, v) \mapsto f \cdot v$

définit une action du groupe G sur l'ensemble \mathbb{R}^n .

Soit v dans \mathbb{R}^n . Nous avons

$$\mathrm{id}_{\mathbb{R}^n} \cdot v = \mathrm{id}_{\mathbb{R}^n}(v) = v$$

et si f, g appartiennent à $O(n, \mathbb{R})$

$$(f\circ g)\cdot v=(f\circ g)(v)=f(g(v))=f\cdot g(v)=f\cdot (g\cdot v).$$

3. Déterminons l'orbite

$$\mathcal{O}_v^{\mathbf{G}} = \left\{ f \cdot v \,|\, f \in \mathbf{G} \right\}$$

d'un élément v de \mathbb{R}^n sous l'action de G.

Soit v dans \mathbb{R}^n .

Si v = 0, quel que soit $f \in O(n, \mathbb{R})$ f(v) = 0 et

$$\mathcal{O}_0^{G} = \{ f \cdot 0 \, | \, f \in G \} = \{ 0 \}.$$

Si $v \neq 0$, alors du fait que les éléments $f \in O(n, \mathbb{R})$ conservent la norme pour le produit scalaire standard de \mathbb{R}^n nous avons ||f(v)|| = ||v|| et donc \mathcal{O}_v^G est contenue dans la sphère S(0, ||v||) de centre 0 et de

rayon ||v||. Réciproquement soit u dans \mathbb{R}^n tel que ||v|| = ||u||, soient $\mathcal{B}_u = \left(\frac{u}{||u||}, u_2, u_2, \dots u_n\right)$ et $\mathcal{B}_v = \left(\frac{v}{||v||}, v_2, v_2, \dots v_n\right)$ deux bases orthonormées de \mathbb{R}^n (on peut compléter par le procédé de Gram-Schmidt un vecteur de norme 1 en une base orthonormée en dimension finie) et soit f l'application linéaire qui transforme \mathcal{B}_v en \mathcal{B}_u . Puisque \mathcal{B}_v et \mathcal{B}_u sont deux bases orthonormées, f appartient à $O(n, \mathbb{R})$. De plus $f\left(\frac{v}{||v||}\right) = \frac{u}{||u||}$ et ||u|| = ||v|| entraînent f(v) = u. Finalement u appartient à \mathcal{O}_v^G et ainsi $\mathcal{O}_v^G = S(0, ||v||)$ si $v \neq 0$.

4. Montrons que f appartient à G_{e_1} si et seulement si la matrice représentative de f dans C_n est du type

$$\left(\begin{array}{cc} 1 & 0 \\ 0 & P \end{array}\right)$$

où P désigne un élément de $O(n-1,\mathbb{R})$.

Si f appartient à G_{e_1} , alors $f(e_1) = e_1$ et donc la première colonne de la matrice M représentant f dans la

base canonique est : $\begin{pmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$. D'autre part $f(e_1) = e_1$ étant orthogonal à $f(e_2)$, $f(e_3)$, ..., $f(e_n)$ puisque f

préserve le produit scalaire la première ligne de M est $(1\ 0\ 0\ \dots\ 0)$. Par suite $M=\begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix}$. Puisque ${}^t\!MM=\mathrm{id}_n$ nécessairement ${}^t\!PP=\mathrm{id}_{n-1}$; anisi P appartient à $\mathrm{O}(n-1,\mathbb{R})$. Réciproquement si

$$M = mat(f, \mathcal{C}_n) = \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix}$$

avec P dans $O(n-1,\mathbb{R})$ nous avons bien : f appartient à $O(n-1,\mathbb{R})$ (car ${}^t\!MM = \begin{pmatrix} 1 & 0 \\ 0 & {}^t\!PP \end{pmatrix} = \mathrm{id}_n$) et $f(e_1) = e_1$.

5. Montrons que $G_{e_1} \simeq O(n-1,\mathbb{R})$ en explicitant un isomorphisme entre $O(n-1,\mathbb{R})$ et G_{e_1} .

D'après 4. l'application $\Psi \colon \mathrm{O}(n-1,\mathbb{R}) \to \mathrm{G}_{e_1}$ définie par $\Psi(g) = f$ où $\mathrm{mat}(f,\mathcal{C}_n) = \begin{pmatrix} 1 & 0 \\ 0 & P \end{pmatrix}$ et $\mathrm{mat}(g,\mathcal{C}_{n-1}) = P$ est bien à valeurs dans G_{e_1} . L'application Ψ est bien un morphisme de groupes : à la composition des applications correspond le produit des matrices. De plus g appartient à ker Ψ si et seulement si $\mathrm{mat}(g,\mathcal{C}_{n-1}) = \mathrm{id}_{n-1}$ si et seulement si $g = \mathrm{id}_{\mathbb{R}^{n-1}}$ ce qui prouve que Ψ est injective. La surjectivité de Ψ résulte directement de 4.

6. Soit $x \in \mathbb{R}^n \setminus \{0\}$. Donnons un isomorphisme de groupes $\phi_x \colon G_x \xrightarrow{\simeq} G_{e_1}$. Soit x dans $\mathbb{R}^n \setminus \{0\}$. Soit h dans $O(n-1,\mathbb{R})$ tel que $f(e_1) = \frac{x}{||x||}$ (une telle application existe d'après 3.) Considérons

$$\phi_x \colon \mathcal{G}_x \to \mathcal{G}_{e_1}$$
 $f \mapsto h \circ f \circ h^{-1}$.

Notons que $\phi_x(f)$ appartient à $O(n-1,\mathbb{R})$ puisque f et h appartiennent à $O(n-1,\mathbb{R})$. D'autre part

$$\phi_x(f)(e_1) = h(f(h^{-1}(e_1))) = h\left(f\left(\frac{x}{||x||}\right)\right) = h\left(\frac{x}{||x||}\right) = e_1$$

ainsi ϕ_x est bien à valeurs dans G_{e_1} . Le fait que ϕ_x est un isomorphisme de groupes se vérifie directement.

7. Déterminons les $x \in \mathbb{R}^n$ pour lesquels on a $G_x \triangleleft O(n, \mathbb{R})$.

Soit x dans \mathbb{R}^n .

Si x = 0, alors $G_0 = O(n, \mathbb{R})$ et $G_0 \triangleleft O(n, \mathbb{R})$.

Supposons $x \neq 0$. Soit f dans $G_x \setminus \{id_{\mathbb{R}^n}\}$ (rappelons que d'après 3. G_x n'est pas réduit à $id_{\mathbb{R}^n}$). Il existe y dans \mathbb{R}^n tel que ||y|| = ||x|| et f(y) = y. D'après 3. on peut alors construire h dans $O(n, \mathbb{R})$ tel que h(y) = x. Alors $h(f(h^{-1}(x))) \neq x$ (en effet $h^{-1}(x) = y$ donc $f(h^{-1}(x)) = f(y) \neq y$). Ainsi G_x n'est pas distingué dans $O(n, \mathbb{R})$.

Finalement $G_x \triangleleft O(n, \mathbb{R})$ si et seulement si x = 0.

8. Soit $x \in \mathbb{R}^n \setminus \{0\}$. Nous restreignons l'action de G sur \mathbb{R}^n à celle de G_x . Donnons l'orbite

$$\mathcal{O}_v^{G_x} = \left\{ f \cdot v \,|\, f \in G_x \right\}$$

d'un élément v de \mathbb{R}^n sous cette action.