Feuille d'exercices : Groupes libres

Exercice 1 Soient r et s deux entiers > 1 premiers entre eux. Quel est l'ordre du groupe de présentation $\langle a | a^r, a^s \rangle$?

Solution 1 L'ordre de a est un diviseur de r et s qui sont premiers entre eux donc a est d'ordre 1. Puisque G est engendré par a, le groupe G est d'ordre 1. Ainsi $G = \{e_G\}$.

Exercice 2 Soit G le groupe de présentation

$$\langle a, b, c | a^3 = b^3 = c^4 = e_G, ac = ca^{-1}, aba^{-1} = bcb^{-1} \rangle.$$

Montrer que $ab^3a^{-1} = bc^3b^{-1}$ puis que $c = e_G$; en déduire G.

Solution 2 Nous avons

$$ab^{3}a^{-1} = ab(a^{-1}a)b(a^{-1}a)ba^{-1}$$

$$= (aba^{-1})(aba^{-1})(aba^{-1})$$

$$= (bcb^{-1})(bcb^{-1})(bcb^{-1})$$

$$= bc(b^{-1}b)c(b^{-1}b)cb^{-1}$$

$$= bc^{3}b^{-1}$$

Puisque $b^3 = e$, nous avons $ab^3a^{-1} = aa^{-1} = e_G$. Comme $bc^3b^{-1} = ab^3a^{-1}$ nous obtenons que $bc^3b^{-1} = e_G$ et que $c^3 = e_G$. Par suite $c = c^4(c^3)^{-1} = e_G(e_G)^{-1} = e_G$.

Puisque c=e, la relation $ac=ca^{-1}$ devient $a=a^{-1}$ ou encore $a^2=e$. Comme $a^3=e$ nous obtenons a=e. Enfin puisque $a=c=e_G$ la relation $aba^{-1}=bcb^{-1}$ se réduit à $b=e_G$. Comme a,b et c engendrent G nous obtenons $G=\{e_G\}$.

Exercice 3 Montrer que tout élément non trivial d'un groupe libre est d'ordre infini.

Solution 3 Soit G un groupe libre. Soit g un élément non trivial de G. Raisonnons par l'absurde, *i.e.* supposons que g soit d'ordre fini n; alors $g^n = e$. Or g^n est un mot formé avec les générateurs de G, la relation $g^n = e$ fournit donc une relation entre ces générateurs ce qui contredit le fait que G est un groupe libre.

Exercice 4 Quel est l'ordre du groupe G engendré par deux éléments x et y vérifiant les relations

$$x^3 = y^2 = (xy)^2 = 1$$
?

Quels sont les sous-groupes de G?

Solution 4 Supposons que G ne soit pas trivial. Ceci implique que $x \neq y$ (en effet si x = y alors $x^3 = 1$ se réécrirait $y^3 = 1$ et combiné à $y^2 = 1$ on obtiendrait x = y = 1.

L'ordre de x est 3; celui de y est 2. Il en résulte que |G| est un multiple de $2 \times 3 = 6$. Le groupe G contient e, x, x^2, y, xy et xy^2 . Montrons qu'il n'y a pas d'autres éléments dans G. Commençons à écrire la table de G en utilisant ces six éléments

	e	x	x^2	y	xy	x^2y
e	e	\boldsymbol{x}	x^2	y	xy	x^2y
x	\boldsymbol{x}	x^2	e	xy	x^2y	y
x^2	x^2	e	\boldsymbol{x}	x^2y	y	xy
y	y	x^2y	xy	e	x^2	\boldsymbol{x}
xy	xy	y	x^2y	x	e	x^2
x^2y	x^2y	xy	y	x^2	x	e

Par suite cette table est complète et le groupe G compte 6 éléments.

Les sous-groupes de G sont

- ♦ le sous-groupe trivial,
- ♦ le groupe G lui-même,
- \diamond un unique (théorème de Sylow) sous-groupe d'ordre $3:\langle x\rangle$,
- \diamond trois sous-groupes d'ordre 2 exactement (théorème de Sylow) : $\langle y \rangle$, $\langle xy \rangle$, $\langle x^2y \rangle$.

Exercice 5 Quel est l'ordre du groupe G engendré par deux éléments x et y vérifiant les relations

$$xy^2 = y^3x$$

$$yx^3 = x^2y$$
?

Solution 5 À partir de $xy^2 = y^3x$ nous obtenons

$$y^2 = x^{-1}y^3x$$

$$y^3 = xy^2x^{-1}$$

et

$$y^4 = x^{-1}y^6x$$

$$y^6 = xy^4x^{-1}$$
.

Par suite d'une part

$$y^9 = (y^3)^3 = (xy^2x^{-1})^3 = xy^6x^{-1}$$

et d'autre part

$$xy^6x^{-1} = x(y^6)x^{-1} = x(xy^4x^{-1})x^{-1} = x^2y^4x^{-2}.$$

On en déduit que $y^9 = x^2y^4x^{-2}$. De plus

$$y^9 = y^{-1}(y^9)y = y^{-1}(x^2y^4x^{-2})y = y^{-1}(x^2y)y^4(y^{-1}x^{-2})y = y^{-1}(x^2y)y^4(x^2y)^{-1}y$$

Mais $yx^3 = x^2y$ donc

$$y^9 = y^{-1}(x^2y)y^4(x^2y)^{-1}y = y^{-1}(yx^3)y^4(yx^3)^{-1}y = x^3y^4x^{-3}$$

Puisque $y^9 = x^2 y^4 x^{-2}$ nous obtenons

$$x^2y^4x^{-2} = x^3y^4x^{-3}$$

soit $y^4 = xy^4x^{-1}$. Mais on a vu précédemment que $y^6 = xy^4x^{-1}$ donc $y^4 = y^6$ soit $y^2 = e$. À partir de $xy^2 = y^3x$ on a $y^3 = e$ et finalement y = e. De plus $yx^3 = x^2y$ se réécrit $x^3 = x^2$ d'où x = e. Finalement G est le groupe trivial

Exercice 6 Le groupe de Fibonnacci 1 G est engendré par les éléments a, b, c et d vérifiant les relations

$$ab = c$$

$$bc = d$$

$$cd = a$$

$$da = b$$
.

Quel est l'ordre de G?

Solution 6 À partir de a = cd nous obtenons

$$a^2 = acd = cda = cb = ab^2$$

d'où $a = b^2$.

De même nous obtenons que $c^2 = b$, $d^2 = c$ et $a^2 = d$.

Par suite

$$d = a^2 = b^4 = c^8 = d^{16}$$

et $d^{15} = e$.

De la même façon nous obtenons que $a^{15} = b^{15} = c^{15} = e$.

A partir de ab=c nous obtenons que $ab=a^4$ d'où $aa^8=a^4$ et $a^5=e$. De même $b^5=c^5=d^5=e$. Par conséquent $d=a^2,\,b=a^3,\,c=a^4$ et $G\simeq \mathbb{Z}/_{5\mathbb{Z}}$.

 $^{1. \ \,}$ Les groupes de Fibonnacci ont été introduits par John Conway en 1965.

Exercice 7 Exprimer comme produit direct de sous-groupes monogènes le sous-groupe multiplicatif de Q* engendré par $\{-6, 6\}$.

Solution 7 Le sous-groupe $H = \langle 6 \rangle$ de $G = \langle 6, -6 \rangle \subset \mathbb{Q}^*$ est monogène.

Le groupe G_H est monogène engendré par (-6)H. Le sous-groupe H est distingué dans G: il suffit de vérifier que $(-6) \times 6 \times (-6)^{-1}$ appartient à H ce qui est vrai puisque ce nombre vaut 6

Ainsi G est produit direct de deux groupes monogènes : $G \simeq H \times G/_{H}$.

Exercice 8 Montrer que le groupe multiplicatif engendré par les matrices

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}$$

est abélien.

Exprimer ce groupe, de deux façons différentes, comme produit direct de sous-groupes monogènes.

Solution 8 Soit G le groupe multiplicatif engendré par les matrices

$$A = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 1 \\ -1 & -1 \end{pmatrix}$$

On peut vérifier que AB = BA = -2id;

le groupe G est donc abélien. Le sous-groupe $H = \langle A \rangle$ de G est monogène.

Le groupe G_H est monogène engendré par BH. Notons que $BAB^{-1}=A$; en particulier BAB^{-1} appartient à H et H est un sous-groupe distingué de G.

Il en résulte que G est isomorphe au produit direct des deux groupes monogènes H et $G_{/H}$.

Exercice 9 [Présentation de S_n] Montrer que

$$S_n = \langle t_1, t_2, \dots, t_{n-1} | t_i^2 = 1, (t_i t_{i+1})^3 = 1, [t_i, t_j] = 1 \text{ pour } 2 \leq |i - j| \rangle$$

(Indication : le groupe S_n est engendré par $(1 \ 2), (2 \ 3), \ldots, (n-1 \ n)$).

Solution 9 Pour $1 \le i \le n-1$ posons $t_i = (i \ i+1)$. Le groupe S_n est engendré par ces transpositions. Cet ensemble de transpositions vérifie les relations données car une transposition est d'ordre 2, deux transpositions disjointes commutent (et pour les transpositions considérées t_i et t_j sont disjointes si et seulement si |i-j|>1), le produit $t_i t_{i+1}$ est égal au 3-cycles $(i \ i+1 \ i+2)$ et est donc d'ordre 3. Par suite

$$S_n = \langle t_1, t_2, \dots, t_{n-1} | t_i^2 = id, (t_i t_{i+1})^3 = id, [t_i, t_i] = id \text{ pour } |i - j| > 1 \rangle$$

En effet soit H le sous-groupe de S_n engendré par les t_i . Le groupe H est distingué dans S_n car

$$\sigma t_i \sigma^{-1} = (\sigma(i) \ \sigma(i+1))$$

et toute transposition est dans H : si |i - k| > 1,

$$(i \ k) = (k-1 \ k)(i \ k)(k-1 \ k).$$

Ainsi H contient A_n car tout sous-groupe distingué non trivial de S_n contient A_n .

Mais H contient strictement A_n car les transpositions ne sont pas des permutations paires. L'indice de A_n dans S_n étant 2 nous obtenons que l'indice de H dans S_n est 1. Il s'ensuit que $S_n = H$.

Exercice 10 Rappelons que le groupe des quaternions \mathbb{H}_8 est le sous-groupe du groupe des matrices 2×2 inversibles à coefficients complexes engendré par

$$A = \begin{pmatrix} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{pmatrix}$$
 et
$$B = \begin{pmatrix} -\mathbf{i} & 0 \\ 0 & \mathbf{i} \end{pmatrix}$$

Montrer que ce groupe admet les deux présentations suivantes

$$\langle A, B | A^2 = B^2 = (AB)^2 \rangle$$
 $\langle R, S, T | R^2 = S^2 = T^2 = RST \rangle$.

Solution 10 On peut vérifier que $A^2 = B^2 = (AB)^2 = -id$ d'où la première présentation pour \mathbb{H}_8 (en effet un groupe qui a cette présentation est d'ordre 8).

Posons R = A, S = B et T = AB; alors $R^2 = S^2 = -\mathrm{id}$ d'après ce qu'on vient de voir. Par ailleurs $T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ donc $T^2 = -\mathrm{id}$. Et $RST = ABAB = (AB)^2 = -\mathrm{id}$ d'où la deuxième présentation proposée.

Exercice 11 [Présentation de A_4]

1. Soient $a=(2\ 3\ 4)$ et $b=(1\ 2)(3\ 4)$ deux éléments de \mathcal{A}_4 . Montrer que

$$\langle a, b | a^3 = b^2 = (ab)^3 = e \rangle$$

est une présentation de A_4 .

2. Donner une seconde présentation de A_4 en utilisant les deux 3-cycles (2 3 4) et (1 3 2).

Solution 11

1. Rappelons que A_4 est d'ordre 12. Le groupe G de présentation

$$\langle a, b | a^3 = b^2 = (ab)^3 = e \rangle$$

est d'ordre 12; en effet ses éléments sont

$$e, a, a^2, b, ab, a^2b, ba, ba^2, aba, a^2ba, aba^2, a^2ba^2.$$

Le morphisme φ de G dans \mathcal{A}_4 défini par

$$\varphi(a) = (1\ 2\ 3)$$
 $\varphi(b) = (1\ 2)(3\ 4)$

réalise un isomorphisme entre G et A_4 .

2. Posons $\alpha = (2\ 3\ 4)$ et $\beta = (1\ 3\ 2)$; alors $\alpha\beta = (1\ 4\ 2)$ et

$$\alpha^3 = id$$
 $\beta^3 = id$ $(\alpha\beta)^3 = id$

On peut vérifier que le groupe G de présentation

$$\langle \alpha, \beta, | \alpha^3 = \beta^3 = (\alpha \beta)^3 = e \rangle$$

est d'ordre 12. On en déduit que G et A_4 sont isomorphes.

Exercice 12 [Présentation de S_4] Nous allons montrer que le groupe S_4 est isomorphe au groupe G de présentation

$$\langle a, b | a^3 = b^4 = (ab)^2 = e \rangle.$$

- 1. En utilisant les éléments $\alpha = (2\ 3\ 4)$ et $\beta = (1\ 3\ 2\ 4)$ de \mathcal{S}_4 montrer qu'il existe un morphisme de G sur \mathcal{S}_4 . Désignons par H le sous-groupe de G engendré par a et b^2 .
- 2. Montrer que bab^{-1} est un élément de H; en déduire que H est un sous-groupe distingué de G.
- 3. Montrer que ${\rm ^{G}\!/_{H}}$ a au plus deux éléments : les classes H et $b{\rm H}.$
- 4. Montrer que $(ab^2)^3 = e$.
- 5. Conclure en utilisant la présentation de A_4 obtenue précédemment.

Solution 12

1. Remarquons que les permutations α et β considérées vérifient les relations

$$\alpha^3 = id,$$
 $\beta^4 = id,$ $(\alpha\beta)^2 = id.$

Il existe donc un morphisme φ de G sur \mathcal{S}_4 qui envoie a sur α et b sur β . C'est de plus un morphisme injectif.

2. Nous avons

$$bab^{-1} = bab^3 = (bab)b^2,$$
 $bab = a^{-1} = a^2.$

Donc $bab^{-1}=a^2b^2$ appartient à H. Puisque G est engendré par a et b, cette relation implique que H est distingué dans G.

- 3. Puisque G est engendré par a et b, G_H est engendré par aH et bH, donc par bH car aH = H. Or b^2 H = H donc G_H contient au plus les deux éléments H et bH.
- 4. Nous avons $abba = b^3 a^2 a^2 b^3 = b^3 ab^3$ car $ab = b^{-1} a^{-1} = b^3 a^2$ et $ba = a^{-1} b^{-1} = a^2 b^3$. Il en résulte que $(ab^2)^3 = abbabbabb = b^3 ab^3 b^2 ab^2 = b^3 abab^2 = b^3 (abab)b = b^4 = e$.
- 5. Le sous-groupe H de G a pour présentation

$$\langle a, c | a^3 = c^2 = (ac)^3 \rangle$$

(poser $c=b^2$). Les groupes H et \mathcal{A}_4 ont même présentation et $\varphi(H) \subset \mathcal{A}_4$ donc $\varphi(H) = \mathcal{A}_4$; en particulier H et \mathcal{A}_4 sont isomorphes. Le sous-groupe H est d'indice 2 dans G et \mathcal{A}_4 est d'indice 2 dans \mathcal{S}_4 . Ainsi $|G| = |\mathcal{S}_4|$. Finalement φ est un morphisme injectif de G dans \mathcal{S}_4 et $|G| = |\mathcal{S}_4|$ donc φ réalise un isomorphisme entre G et \mathcal{S}_4 .

Exercice 13 [Présentation d'un produit semi-direct de groupes cycliques]

Notation : $[a]_m$ désigne un élément de $\mathbb{Z}/_{m\mathbb{Z}}$ représenté par $a \in \mathbb{Z}$, avec $0 \leqslant a \leqslant m-1$. De même $[a]_n$ désigne un élément de $\mathbb{Z}/_{n\mathbb{Z}}$ représenté par $a \in \mathbb{Z}$, avec $0 \leqslant a \leqslant n-1$.

Soient m, n des entiers ≥ 2 et

$$\tau: \mathbb{Z}/_{m\mathbb{Z}} \to \operatorname{Aut}\left(\mathbb{Z}/_{n\mathbb{Z}}\right)$$

un morphisme. Désignons par G le produit semi-direct $\mathbb{Z}/_{n\mathbb{Z}} \rtimes_{\tau} \mathbb{Z}/_{m\mathbb{Z}}$ défini par τ .

Posons

$$[i]_n = \tau([1]_m)([1]_n)$$
 $h = ([1]_n, [0]_m)$ $k = ([0]_n, [1]_m).$

Vérifions que

$$i^m \equiv 1 \pmod{n}$$
 $h^n = k^m = ([0]_n, [0]_m)$ $khk^{-1} = h^i$.

En déduire que G admet pour présentation

$$\langle a, b | a^n = b^m = e, ab = ba^i \rangle.$$

Solution 13 Un morphisme $\tau \colon \mathbb{Z}/_{m\mathbb{Z}} \to \operatorname{Aut}\left(\mathbb{Z}/_{n\mathbb{Z}}\right)$ est entièrement déterminé par l'image $\tau([1]_m)$ de $[1]_m$ dans $\operatorname{Aut}\left(\mathbb{Z}/_{n\mathbb{Z}}\right)$. Cette image est elle-même déterminée par l'image de $[1]_n$ par $\tau([1]_m)$. Par suite un morphisme $\tau \colon \mathbb{Z}/_{m\mathbb{Z}} \to \operatorname{Aut}\left(\mathbb{Z}/_{n\mathbb{Z}}\right)$ est entièrement déterminé par $[i]_n = \tau([1]_m)([1]_n)$. Comme $[1]_m$ est d'ordre m, on a $\tau([1]_m)^m = \operatorname{id}$. Ainsi $i^m \equiv 1 \pmod{n}$.

Clairement $h^n = k^m = ([0]_n, [0]_m)$. L'inverse de k dans G est $k^{-1} = ([0]_n, [m-1]_m)$. Il en résulte que

$$hk^{-1} = ([1]_n, [0]_m)([0]_n, [m-1]_m)$$

= $([1]_n + \tau([0]_m)([0]_n), [m-1]_m)$
= $([1]_n, [m-1]_m)$

et donc que

$$khk^{-1} = ([0]_n, [1]_m)([1]_n, [m-1]_m)$$

$$= ([0]_n + \tau([1]_m)([1]_n), [0]_m)$$

$$= ([i]_n, [0]_m)$$

En particulier $khk^{-1} = h^i$.

Le groupe G est engendré par a=h et $b=k^{-1}$ qui vérifient $a^n=b^ba^i$. Une présentation de G est la suivante

$$G = \langle a, b | a^n = b^m = e, ab = ba^i \rangle.$$