LES GROUPES $SU_2/\{\pm id\}$ ET SO_3 SONT ISOMORPHES

Référence : Caldero-Germoni, Histoires hédonistes de groupes et de géométries, tome premier, pages 232-234

Leçons possibles:

182 : Applications des nombres complexes à la géométrie.

108 : Exemples de parties génératrices d'un groupe. Applications.

183 : Utilisation des groupes en géométrie.

103 : Exemples de sous-groupes distingués et de groupes quotients. Applications.

Soit $E = \mathbb{R}^n$ et soit q la forme quadratique canonique $q(x_1, x_2, \dots, x_n) = \sum_{k=1}^n x_k^2$. L'ensemble

des éléments f du groupe linéaire $\mathrm{GL}(\mathbb{R}^n)$ tels que q(f(x))=q(x) pour tout $x\in E$ est un groupe appelé groupe orthogonal standard. Il s'identifie canoniquement au groupe des matrices orthogonales $n\times n$

$$O_n = \left\{ A \in \operatorname{GL}_n \mid {}^{\operatorname{t}} A A = A^{\operatorname{t}} A = \operatorname{Id} \right\}$$

où ${}^{t}A$ est la matrice transposée de A. Le déterminant d'un élément de \mathcal{O}_n appartient à $\{1, -1\}$. Le sous-groupe $\mathrm{SO}_n = \mathrm{O}_n \cap \mathrm{SL}_n$ des éléments de O_n dont le déterminant est 1 est un sous-groupe de O_n .

Rappelons que le groupe unitaire est

$$U_n = \left\{ A \in \operatorname{GL}_n \mid A^*A = AA^* = \operatorname{Id} \right\}$$

où la matrice ajdointe de A est notée A^* (*i.e.* $A^* = {}^{t}\overline{A}$). Le groupe spécial unitaire est par définition $SU_n = U_n \cap SL_n$; il est formé des matrices unitaires de déterminant 1. Pour n=2 on a

$$\mathrm{SU}_2 = \left\{ \left(\begin{array}{cc} a & -\overline{b} \\ b & \overline{a} \end{array} \right) \in M_2(\mathbb{C}) \, |\, |a|^2 + |b|^2 = 1 \right\}.$$

Théorème 1. Les groupes $SU_2/\{\pm id\}$ et SO_3 sont isomorphes :

$$SU_2/\{\pm id\} \simeq SO_3$$

Lemme 2. Les retournements, i.e. les rotations d'angle π , engendrent SO_3 .

 $D\acute{e}monstration$. Tout élément de SO₃ est la composition d'un nombre pair de réflexions. Il suffit donc de montrer que la composée de deux réflexions est une composée de deux retournements.

Soient x et y deux points de $\mathbb{R}^3 \setminus \{0\}$. On désigne par τ_x et τ_y les réflexions respectives par rapport à x^{\perp} et y^{\perp} . On a

$$\tau_x \circ \tau_y = (-\tau_x) \circ (-\tau_y)$$

et $-\tau_x$ et $-\tau_y$ sont des retournements.

Démonstration du Théorème 1. Rappelons que

$$\mathbb{H} = \left\{ \left(\begin{array}{cc} a & -\overline{b} \\ b & \overline{a} \end{array} \right) \in M_2(\mathbb{C}) \, | \, a, \, b \in \mathbb{C} \right\}.$$

est un \mathbb{R} -espace vectoriel de dimension 4 dont la base canonique est $\{\mathrm{Id},\,I,\,J,\,K\}$ où

$$I = \left(\begin{array}{cc} \mathbf{i} & 0 \\ 0 & -\mathbf{i} \end{array} \right), \qquad \qquad J = \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array} \right), \qquad \qquad K = \left(\begin{array}{cc} 0 & \mathbf{i} \\ \mathbf{i} & 0 \end{array} \right).$$

Le déterminant correspond à la norme au carrée $N: h \mapsto h\overline{h}$ donc au produit scalaire standard sur \mathbb{R}^4 ; du point de vue matriciel \overline{h} correspond à la transposée conjuguée.

Le sous-espace

$$\mathbb{I} = \left\{ \left(\begin{array}{cc} a & -\overline{b} \\ b & \overline{a} \end{array} \right) \in M_2(\mathbb{C}) \, | \, a \in \mathbf{i} \mathbb{R}, \, b \in \mathbb{C} \right\}$$

des quaternions imaginaires purs est l'orthogonale de $\mathbb{R} = \mathbb{R} \mathrm{Id}$; il s'identifie à \mathbb{R}^3 .

Notons que $SU_2 \simeq \mathbb{S}^3$ agit sur \mathbb{H} par automorphismes d'algèbres

$$\varphi \colon \mathrm{SU}_2 \to \mathrm{Aut}(\mathbb{H})$$
$$h \mapsto \varphi_h \colon \mathbb{H} \to \mathbb{H}$$
$$u \mapsto huh^{-1}$$

L'application φ_h est linéaire et respecte la norme de \mathbb{H} car $N(huh^{-1}) = N(u)$. Comme Id est central dans \mathbb{H} l'action de SU₂ préserve \mathbb{R} et donc préserve son orthogonal \mathbb{I} . On peut alors considérer

$$\varphi \colon \mathrm{SU}_2 \to \mathrm{O}(\mathbb{I})$$
$$h \mapsto \varphi_h \colon \mathbb{I} \to \mathbb{I}$$
$$u \mapsto huh^{-1}$$

Via le choix d'une base on a un isomorphisme entre les isométries de \mathbb{I} et le groupe orthogonal O_3 . On peut donc définir un morphisme encore noté $\varphi \colon SU_2 \to O_3$.

Remarquons qu'en fait φ est à valeurs dans SO_3 ; en effet SU_2 est connexe donc $\varphi(SU_2)$ est contenu dans la composante connexe de l'identité de O_3 , à savoir SO_3 .

Déterminons $\ker \varphi$. Par définition

$$\ker \varphi = \{ M \in \operatorname{SU}_2 \mid M \text{ commute avec } I, J \text{ et } K \}.$$

Ainsi ker φ correspond à l'intersection du centre de \mathbb{H} (*i.e.* les quaternions réels) avec la sphère unité. Par suite ker $\varphi = \{\pm \mathrm{Id}\}.$

Montrons que φ est surjective. D'après le Lemme 2 il suffit de montrer que tout retournement est dans l'image de φ . Soit h un élément de $\mathbb{S}^3 \cap \mathbb{I} \simeq \mathbb{S}^2$. Considérons — d'une part le retournement r_h de $\mathbb{I} \simeq \mathbb{R}^3$ d'axe $\mathbb{R}h$, — d'autre part la rotation $\varphi(h)$.

- Montrons que $\varphi(h) = r_h$:
 on a $\varphi(h)(h) = hhh^{-1} = h$;
 soit $u \in h^{\perp}$, i.e. u tel que $u\overline{h} + h\overline{u} = 0$ car la forme bilinéaire symétrique associée à la norme $N(h) = h\overline{h}$ est

$$\langle h, h' \rangle = \frac{1}{2} \Big(h \overline{h'} + h' \overline{h} \Big).$$

Puisque u et h appartiennent à $\mathbb I$ l'égalité $u\overline h + h\overline u = 0$ se réécrit -uh - hu = 0 ou encore $huh^{-1} = -u \text{ soit } \varphi(h)(u) = -u.$