ISOMORPHISMES EXCEPTIONNELS

Référence: Perrin, Cours d'algèbre, page 106.

Théorème 1. On a les isomorphismes suivants

- (1) $GL(2, \mathbb{F}_2) = SL(2, \mathbb{F}_2) = PSL(2, \mathbb{F}_2) \simeq S_3$;
- (2) $\operatorname{PGL}(2, \mathbb{F}_3) \simeq \mathcal{S}_4$ et $\operatorname{PSL}(2, \mathbb{F}_3) \simeq \mathcal{A}_4$;
- (3) $\operatorname{PGL}(2, \mathbb{F}_4) = \operatorname{PSL}(2, \mathbb{F}_4) \simeq \mathcal{A}_5$;
- (4) $\operatorname{PGL}(2, \mathbb{F}_5) \simeq \mathcal{S}_5$ et $\operatorname{PSL}(2, \mathbb{F}_5) \simeq \mathcal{A}_5$.

Lemme 2. Tout sous-groupe d'indice n dans S_n est isomorphe à S_{n-1} .

Démonstration. Soit H un sous-groupe d'indice n dans S_n .

Si n > 3, on vérifie l'énoncé directement.

Si n=4, alors : si H $\not\simeq \mathcal{S}_3$, alors H est cyclique (rappel : si p, q sont des nombres premiers tels que p < q et p ne divise pas q-1 alors tout groupe d'ordre pq est cyclique) : contradiction avec le fait que \mathcal{S}_4 ne contient pas d'élément d'ordre 6.

Supposons $n \geq 5$. Le groupe S_n , et donc aussi H, opère par translation à gauche sur $E = S_n/H$ d'où un homomorphisme

$$\varphi \colon \mathcal{S}_n \to \mathcal{S}_E \simeq \mathcal{S}_n.$$

Puisque $\ker \varphi = \bigcap_{a \in S_n} a H a^{-1}$, $\ker \varphi$ est distingué dans S_n et $\ker \varphi \subset H$ on a $\ker \varphi = \{id\}$

(rappel : pour $n \geq 5$ les sous-groupes distingués de \mathcal{S}_n sont $\{id\}$, \mathcal{A}_n et \mathcal{S}_n). Pour des raisons de cardinalité $(|\mathcal{S}_n| = |\mathcal{S}_E \simeq \mathcal{S}_n|)$, φ est un isomorphisme.

Comme H est le stabilisateur de la classe de idH on a : $\varphi(H) \subset \mathcal{S}_n$ est le stabilisateur d'un point et c'est donc un sous-groupe isomorphe à \mathcal{S}_{n-1} .

Démonstration du Théorème 1. Soit E un \mathbb{k} -espace vectoriel. On introduit l'espace projectif $\mathbb{P}(E)$ associé à E; c'est l'ensemble des droites vectorielles de E. Le groupe $\mathrm{GL}(E)$ opère sur $\mathbb{P}(E)$ et les homothéties opérant trivialement $\mathrm{PGL}(E)$ opère aussi sur $\mathbb{P}(E)$. De plus $\mathrm{PGL}(E)$ opère fidèlement sur $\mathbb{P}(E)$ ([Perrin, Cours d'algèbre, page 98]).

On fait agir $\operatorname{PGL}(2, \mathbb{F}_q)$ sur les droites vectorielles de $(\mathbb{F}_q)^2$. Il y a q+1 telles droites de sorte que l'on a un morphisme injectif

$$\varphi \colon \mathrm{PGL}(2,\mathbb{F}_q) \hookrightarrow \mathcal{S}_{q+1}.$$

Par ailleurs le cardinal de $\operatorname{PGL}(2,\mathbb{F}_q)$ est $\frac{(q^2-1)(q^2-q)}{q-1}=q(q^2-1)$; c'est aussi le cardinal de $\operatorname{SL}(2,\mathbb{F}_q)$. Notons aussi que si la caractéristique de \mathbb{F}_q n'est pas 2, alors $\operatorname{PSL}(2,\mathbb{F}_q)$ est d'indice 2 dans $\operatorname{PGL}(2,\mathbb{F}_q)$.

- (1) On a $PGL(2, \mathbb{F}_2) = GL(2, \mathbb{F}_2) = SL(2, \mathbb{F}_2) = PSL(2, \mathbb{F}_2).$
- (2) Comme $|PGL(2,\mathbb{F}_3)| = 24$, on a $PGL(2,\mathbb{F}_3) \simeq \mathcal{S}_4$. Puisque \mathcal{A}_4 est le seul sous-groupe d'indice 2 dans \mathcal{S}_4 on a $PSL(2,\mathbb{F}_3) \simeq \mathcal{A}_4$.
- (3) On a $|PGL(2, \mathbb{F}_4)| = |PSL(2, \mathbb{F}_4)| = 60$. Puisque A_5 est l'unique sous-groupe d'indice 2 dans S_5 on a $PGL(2, \mathbb{F}_4) \simeq A_5$.
- (4) On a $|PGL(2, \mathbb{F}_5)| = 120$ donc $PGL(2, \mathbb{F}_5)$ s'identifie à un sous-groupe d'indice 6 de \mathcal{S}_6 . Ainsi, d'après le Lemme 2, le groupe $PGL(2, \mathbb{F}_5)$ est isomorphe à \mathcal{S}_5 . Il en résulte que

$$\mathrm{PSL}(2,\mathbb{F}_5)\simeq\mathcal{A}_5.$$