REPRÉSENTATIONS ET SOUS-GROUPES DISTINGUÉS

Référence : Peyre, l'algèbre discrète de la transformée de Fourier, pages 231-232

Leçons possibles:

107 : Représentations et caractères d'un groupe fini sur un C-espace vectoriel. Exemples.

103 : Exemples de sous-groupes distingués et de groupes quotients. Applications.

104 : Groupes finis. Exemples et applications.

Théorème 1. Soit G un groupe fini dont e_G est l'élément neutre. Soient $\rho_1, \rho_2, \ldots, \rho_r$ un ensemble de représentants des classes d'isomorphies de représentations irréductibles. Soient $\chi_1, \chi_2, \ldots, \chi_r$ les caractères irréductibles associés. Posons

$$K_{\chi_i} = \left\{ g \in G \,|\, \chi_i(g) = \chi_i(e_G) \right\}$$

Les sous-groupes distingués de G sont les

$$\bigcap_{i\in I} K_{\chi_i}$$

$$où I \subset \{1, 2, 3, \dots, r\}.$$

Corollaire 2. Soit G un groupe fini. Soient $\rho_1, \rho_2, \ldots, \rho_r$ un ensemble de représentants des classes d'isomorphies de représentations irréductibles. Soient $\chi_1, \chi_2, \ldots, \chi_r$ les caractères irréductibles associés.

Le groupe G est simple si et seulement si

$$\forall i \neq 1, \forall g \in G \qquad \chi_i(g) \neq \chi_i(e_G).$$

Proposition 3. Soient G un groupe fini et $\rho: G \to \operatorname{GL}(V)$ une représentation de caractère χ_V sur un espace V de dimension d. Soit g un élément d'ordre k de G. Alors

- (i) $\rho(g)$ est diagonalisable;
- (ii) χ_V est somme de $\chi_V(1) = \dim V = d$ racines kième de l'unité;
- (iii) $|\chi_V(g)| \leq \chi_V(e_G) = d$;
- (iv) $K_{\chi_V} = \{x \in G, |\chi_V(x) = \chi_V(e_G)\}$ est un sous-groupe distingué de G. On l'appelle noyau de la représentation.

Démonstration. (i) Puisque $g^k = 1$, on a $\rho(g)^k = \text{id}$. Le polynôme minimal de $\rho(g)$ divise donc $X^k - 1$ qui est scindé à racines simples.

- (ii) Soient $\lambda_1, \lambda_2, \ldots, \lambda_d$ les valeurs propres de $\rho(g)$ qui sont des racines kièmes de l'unité. On a $\chi_V(g) = \lambda_1 + \lambda_2 + \ldots + \lambda_d$.
- (iii) On a $|\chi_V(g)| \le |\lambda_1| + |\lambda_2| + \ldots + |\lambda_d| = d$.
- (iv) Si $|\chi_V(g)| = d$, alors d'après (iii) les nombres complexes λ_i sont positivement liés sur \mathbb{R} Comme ils sont de module 1, ils sont tous égaux. Si $\chi_V(g) = d$, alors nécessairement $\omega_i = 1$ donc $\rho(g) = \mathrm{id}$. Ainsi $K_{\chi_V} = \ker \rho$ est bien un sous-groupe distingué.

Lemme 4. Soit $N \triangleleft G$ un sous-groupe distingué de G. Soit ρ_U une représentation de G/N sur un espace vectoriel U.

Il existe une représentation canonique de G sur U telle que les sous-représentations de U sous l'action de G/N soient exactement celles de U sous l'action de G.

 $D\acute{e}monstration.$ Désignons par $\pi\colon G\to G/N$ la projection canonique. La représentation $\widetilde{\rho}_U$ définie par

$$\forall g \in G$$
 $\widetilde{\rho}_U(g) = \rho_U \circ \pi(g)$

convient. \Box

Soit V un espace vectoriel de dimension égale à l'ordre de G. Soit $(b_t)_{t\in G}$ une base de V. La représentation régulière de G est la représentation

$$\begin{array}{ccc} \rho_{\mathrm{reg}} \colon G & \to & \mathrm{GL}(V) \\ & g & \mapsto & \rho_{\mathrm{reg}}(g) \colon V \to V \\ & & b_t \mapsto b_{at} \end{array}$$

Soit G un groupe fini. Soit $\rho \colon G \to \mathrm{GL}(V)$ une représentation de G. La représentation est fidèle si ρ est injectif.

Proposition 5. La représentation régulière est fidèle.

Démonstration du Théorème 1. Soit $N \triangleleft G$ un sous-groupe distingué de G. Désignons par ρ_U la représentation régulière de G/N. Autrement dit U est un espace vectoriel de dimension égale à |G/N| = |G|/|N|.

Soit $N \triangleleft G$ un sous-groupe distingué de G. Désignons par ρ_U la représentation régulière de G/N. Autrement dit U est un espace vectoriel de dimension égale à |G/N| = |G|/|N| de base $(e_g)_{g \in G/N}$ et $\rho_U(h)(e_g) = e_{hg}$. La représentation régulière est fidèle (Proposition 5) donc ρ_U est injective. Le Lemme 4 permet d'étendre cette représentation en une représentation $\widetilde{\rho}_U : G \to U$. Notons χ le caractère de la représentation $\widetilde{\rho}_U$. On a ker $\widetilde{\rho}_U = \ker(\rho_U \circ \pi) = N$ d'où $N = K_{\chi}$. Ecrivons la décomposition de la représentation $\widetilde{\rho}_U$ en fonction des représentations irréductibles

$$\chi = a_1 \chi_1 + a_2 \chi_2 + \ldots + a_r \chi_r$$

D'après la troisième assertion de la Proposition 3 on a

$$\forall g \in G \qquad |\chi(g)| \le \sum_{i=1}^{r} a_i |\chi_i(g)| \le \sum_{i=1}^{r} a_i |\chi_i(e_G)| = \chi(e_G).$$

On a donc l'égalité $\chi(g)=\chi(e_G),\;i.e.\;g\in K_\chi,$ si et seulement si

$$\forall g \in G$$
 $|\chi(g)| = \sum_{i=1}^{r} a_i |\chi_i(g)| = \sum_{i=1}^{r} a_i |\chi_i(e_G)| = \chi(e_G).$

autrement dit si et seulement si

$$\forall i \qquad a_i \chi_i(g) = a_i \chi_i(e_G).$$

Ceci est finalement équivalent à

$$\forall i \quad a_i > 0 \Rightarrow g \in K_{\gamma_i}$$
.

On obtient donc le résultat voulu avec $I = \{i \mid a_i > 0\}$.

Réciproquement comme les K_{χ_i} sont distingués tout sous-groupe du type $\bigcap K_{\chi_i}$ l'est aussi.

Démonstration du Corollaire 2. On désigne par e_G l'élément neutre de G. Posons

$$K_{\chi_i} = \left\{ g \in G \,|\, \chi_i(g) = \chi_i(e_G) \right\}$$

Supposons qu'il existe un élément de $G \setminus \{e_G\}$ tel que $\chi_i(g) = \chi_i(e_G)$; alors $K_{\chi_i} \subset G$ est un sous-groupe distingué non trivial et G n'est pas simple.

Réciproquement si G n'est pas simple, il existe $g \neq e_G$ dans un certain sous-groupe distingué

 $N \triangleleft G$ non trivial. Le Théorème 1 assure que $N = \bigcap_{i \in I} K_{\chi_i}$ donc g appartient à K_{χ_i} pour $i \in I \subset \{2, 3, ..., r\}$. Ceci signifie bien que $\chi_i(g) = \chi_i(e_G)$.

$$i \in I \subset \{2, 3, \ldots, r\}$$
. Ceci signifie bien que $\chi_i(g) = \chi_i(e_G)$.