Feuille 2

Exercice 1.

Soit R l'anneau des polynômes à quatre variables et coefficients dans \mathbb{Z} . On considère l'action

$$\mathcal{S}_4 \times R \longrightarrow R$$

$$(\sigma, p(x_1, x_2, x_3, x_4)) \longmapsto p(x_{\sigma(1)}, x_{\sigma(2)}, x_{\sigma(3)}, x_{\sigma(4)}).$$

- a) Soient $p(x_1, x_2, x_3, x_4) = 12x_1^5x_2^7x_4 18x_2^3x_3 + 11x_1^6x_2x_3^3x_4^{23}$ et $\sigma = (1\ 2\ 3\ 4)$. Calculer $\sigma \cdot p$.
- b) Donner le stabilisateur de x_4 dans S_4 . Montrer qu'il est isomorphe à S_3 .
- c) Donner le stabilisateur de $x_1 + x_2$ dans S_4 . Montrer que c'est un groupe d'ordre 4.
- d) Donner le stabilisateur de $x_1x_2 + x_3x_4$ dans S_4 . Montrer qu'il est isomorphe à D_8 .

Exercice 2.

Soit $A = \{\{1,3\},\{2,4\}\}$ l'ensemble des sommets opposés du carré \mathcal{P}_4 .

- a) Montrer que le groupe diédral D_8 agit sur A.
- b) Cette action est-elle fidèle? Déterminer son noyau.
- c) Cette action est-elle transitive?
- d) Cette action est-elle 2-transitive?
- e) Déterminer le stabilisateur de chaque élément de A.

Exercice 3.

Soit G, * un groupe. Les applications suivantes définissent-elles des actions à droite?

$$G \times G \longrightarrow G,$$
 $(g, a) \longmapsto a \cdot g := g * a.$

b)

$$G \times G \longrightarrow G,$$
 $(g, a) \longmapsto a \cdot g := g * a * g^{-1}.$

Exercice 4.

Soient G un groupe et A un ensemble. Montrer qu'une application $\beta \colon G \times A \to A$ est une action à droite si et seulement si l'application $\alpha \colon G \times A \to A$ avec $\alpha(g,x) = \beta(g^{-1},x), \, \forall \, g \in G, \, \forall \, x \in A$ est une action à gauche.

Exercice 5.

Soient G un groupe et $\mathcal{P}(G)$ la collection des sous-ensembles de G. On considère l'application

$$G \times \mathcal{P}(G) \longrightarrow \mathcal{P}(G),$$
 $(g, B) \longmapsto g \cdot B := gBg^{-1}.$

Montrer qu'elle définit une action de G sur $\mathcal{P}(G)$ et déterminer le stabilisateur d'un élément B de $\mathcal{P}(G)$.

Exercice 6.

Soient G un groupe, A un sous-ensemble de G et $N_G(A)$ le normalisateur de A dans G. Considérons l'action

$$N_G(A) \times A \longrightarrow A$$
 $(g, a) \longmapsto g \cdot a := gag^{-1}.$

Déterminer le noyau de cette action. Quel est le noyau si A = G?

Exercice 7.

Soit X un ensemble sur lequel opère un groupe G.

- a) Pour $g \in G$ et $x \in X$, comparer Stab_x et $\operatorname{Stab}_{q \cdot x}$.
- b) Montrer qu'un sous-ensemble $Y\subset X$ est stable sous l'action de G si et seulement si Y est réunion d'orbites.
- c) Soit H un sous-groupe de G. On considère l'action

$$G \times G/H \to G/H$$
, $(g', [g]) \mapsto g' \cdot [g] = [g'g]$.

Montrer que $\operatorname{Stab}_{[q]} = gHg^{-1}$.

Exercice 8.

Soit E un espace vectoriel de dimension finie $n \ge 1$ sur un corps k.

- a) Considérons l'action naturelle de GL(E) sur E. Décrire l'orbite d'un vecteur $v \in E$.
- b) Pour quelles valeurs de r l'action de GL(E) sur $E \setminus \{0\}$ est-elle r-transitive?
- c) Comment appelle-t-on les orbites de l'action de GL(E) sur End(E) par conjugaison? Si k est algébriquement clos, donner un représentant privilégié de chaque orbite.
- d) Pour $r \geq 1$, considérons l'action de SL(E) sur E^r par $f \cdot (v_1, \ldots, v_r) = (f(v_1), \ldots, f(v_r))$. Posons

$$U_r := \{(v_1, \dots, v_r) \in E^r \mid \text{la famille } v_1, \dots, v_r \text{ est linéairement indépendante dans } E\}.$$

Montrer que pour r < n, U_r est une orbite sous SL(E).

- e) Notons $\mathcal{F}(E)$ l'ensemble des fonctions de E dans \mathbb{k} muni de sa structure naturelle d'espace vectoriel. Soit G un sous-groupe de GL(E). Pour $g \in G$, $f \in \mathcal{F}(E)$ et $v \in E$ posons $(g \cdot f)(v) := f(g^{-1}v)$. Montrer que ceci définit bien une action de G sur $\mathcal{F}(E)$.
- f) Soit \mathcal{F} l'ensemble des drapeaux de E, c'est-à-dire l'ensemble des (n+1)-uplets de sous-espaces vectoriels de E $(F_0 \subset F_1 \cdots \subset F_n)$ tels que dim $F_i = i \, \forall i$. Montrer que l'action de GL(E) sur \mathcal{F} est transitive.

Exercice 9.

Soit $n \geq 1$ un entier. Considérons l'action de $G := GL_n(\mathbb{k}) \times GL_n(k)$ sur $X := M_n(\mathbb{k}) \times M_n(\mathbb{k})$ donnée par $(P,Q) \cdot (A,B) := (PAQ^{-1},PBQ^{-1})$.

Montrer que si (A_1, B_1) et (A_2, B_2) sont dans la même orbite, alors rg $A_1 = \operatorname{rg} A_2$ et rg $B_1 = \operatorname{rg} B_2$. La réciproque est-elle vraie?

Exercice 10.

Considérons l'action naturelle du groupe $O_2(\mathbb{R})$ sur l'ensemble X des couples de vecteurs du cercle \mathbb{S}^1 .

- a) Déterminer les orbites sous l'action de $O_2(\mathbb{R})$. Donner un invariant total de cette action.
- b) Mêmes questions pour l'action de $SO_2(\mathbb{R})$ sur X.
- c) Quel est le quotient de X par $SO_2(\mathbb{R})$?

Exercice 11. [Isomorphisme entre SO_3 et $SU_2/\{\pm id\}$, Caldero-Germoni, Histoires hédonistes de groupes et de géométries, tome 1, pages 232-234]

- a) Montrer que les retournements, c'est-à-dire les rotations d'angle π , engendrent SO₃.
- b) Montrer que les groupes SO_3 et $SU_2/\{\pm id\}$ sont isomorphes.

Exercice 12. [Théorème de Wedderburn, Perrin, Cours d'algèbre, page 82]

Soit \mathbb{k} un corps et soit $n \in \mathbb{N}^*$. Supposons que n est premier à la caractéristique de \mathbb{k} . L'ensemble des racines n-ièmes de l'unité dans \mathbb{k} est noté $\mu_n(\mathbb{k})$

$$\mu_n(\mathbb{k}) = \{ \zeta \in \mathbb{k} \, | \, \zeta^n = 1 \}.$$

C'est un sous-groupe de \mathbb{k}^* , de cardinal $\leq n$, donc cyclique.

Notons K_n le corps de décomposition de $P_n = X^n - 1$ sur \mathbb{k} . Alors $|\mu_n(K_n)| = n$ et $\mu_n(K_n) \simeq \mathbb{Z}/n\mathbb{Z}$. De plus comme $\mu_n(\mathbb{k})$ est inclus dans $\mu_n(K_n)$, on a $\mu_n(\mathbb{k}) \simeq \mathbb{Z}/d\mathbb{Z}$ pour un certain diviseur d de n.

Une racine n-ième primitive de 1 est un élément ζ de K_n tel que $\zeta^n = 1$ et $\zeta^d \neq 1$ pour d < n. Autrement dit ζ est un générateur du groupe $\mu_n(K_n)$ de sorte qu'il y a $\varphi(n)$ racines primitives de 1 (voir [Perrin, Cours d'algèbre, page 24]). Leur ensemble est noté $\mu_n^*(K_n)$. Le n-ième polynôme cyclotomique $\phi_{n,\Bbbk} \in K_n[X]$ est donné par la formule

$$\phi_{n,\mathbb{k}}(X) = \prod_{\zeta \in \mu_n^*(K_n)} (X - \zeta).$$

Remarquons que:

- si ζ est une racine n-ième primitive de l'unité, les autres sont les ζ^m avec $\operatorname{pgcd}(n,m)=1$.
- le polynôme $\phi_{n,k}$ est unitaire, de degré $\varphi(n)$.
- 1. Montrer que

$$X^n - 1 = \prod_{d|n} \phi_{d,k}(X).$$

En comparant les degrés des polynômes on retrouve la formule

$$n = \sum_{d|n} \varphi(d).$$

2. Montrer que tout corps fini est commutatif.

Exercice 13. [Générateurs de S_n , Combes, Algèbre et géométrie, Bréal, pages 79-81]

- 1. Montrer que les sous-groupes de $(\mathbb{Z}, +)$ sont les sous-ensembles $n\mathbb{Z}$ où $n \in \mathbb{N}$.
- 2. Soient G un groupe et $g \in G$. L'application $f : k \mapsto a^k$ est un homomorphisme de \mathbb{Z} sur le sous-groupe $\langle a \rangle$ engendré par a.

Montrer que

- Si f est injectif, alors $\langle a \rangle$ est isomorphe à \mathbb{Z} .
- Si f n'est pas injectif, alors $\langle a \rangle$ est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ où $n \in \mathbb{N}^*$ est le plus petit entier non nul tel que $a^n = e$. Dans ce cas, les entiers k tels que $a^k = e$ sont les multiples de n et $\langle a \rangle = \{e, a, \ldots, a^{n-1}\}.$
- 3. Soit E un ensemble. Soit G un groupe. Considérons une action à gauche de G sur E.
 - (i) Montrer que la relation

$$x\mathcal{R}y \iff (\exists g \in G \quad g \cdot x = y)$$

est une relation d'équivalence sur E.

(ii) Montrer que si $x \in E$, alors

$$G_x = \{ g \in G \mid g \cdot x = x \}$$

est un sous-groupe de G.

(iii) Montrer que si $x \in E$, $g_0 \in G$ et $y = g_0 \cdot x$, alors

$$G_y = g_0 G_x g_0^{-1}$$
 $\{g \in G \mid g \cdot x = y\} = g_0 G_x$

4. Montrer que toute permutation $s \in \mathcal{S}_n$ s'écrit de manière unique (modulo l'ordre des termes) comme un produit de cycles disjoints

$$s = c_1 c_2 \dots c_p$$

et que l'ordre de s est le ppcm des ordres de c_1, c_2, \ldots, c_p .

5. Montrer que toute permutation $s \in \mathcal{S}_n$ est un produit de transpositions.

Exercice 14. [Un théorème de Burnside, Francinou, Gianella, Nicolas, exercices de mathématiques oraux x-ens, algèbre 2, pages 185-186]

1. Soit A un élément de $M_n(\mathbb{C})$ telle que $\operatorname{Tr}(A^k) = 0$ pour tout k dans \mathbb{N}^* . Montrer que A est nilpotente, *i.e.* qu'il existe un entier ℓ tel que $A^{\ell} = 0$.

2. Soit G un sous-groupe de $\mathrm{GL}(n,\mathbb{C})$. Soit $(M_i)_{1\leq i\leq m}\in G^m$ une base de $\mathrm{Vect}(G)$. Considérons l'application

$$f: G \to \mathbb{C}^m$$
, $A \mapsto (\operatorname{Tr}(AM_i))_{1 \le i \le m}$

Montrer que si f(A) = f(B), alors $AB^{-1} - I_n$ est nilpotente.

3. Soit G un sous-groupe de $\mathrm{GL}(n,\mathbb{C})$. Soit $(M_i)_{1\leq i\leq m}\in G^m$ une base de $\mathrm{Vect}(G)$. Considérons l'application

$$f: G \to \mathbb{C}^m$$
, $A \mapsto (\operatorname{Tr}(AM_i))_{1 \le i \le m}$

Supposons que toutes les matrices de G soient diagonalisables. Montrer que f est injective. Rappelons qu'un sous-groupe G de $\mathrm{GL}(n,\mathbb{C})$ est d'exposant fini s'il existe un entier N tel que $A^N=I_n$ pour toute matrice A de G.

4. Montrer qu'un sous-groupe de $GL(n, \mathbb{C})$ d'exposant fini est fini.

Exercice 15. [Sous-groupes finis de $SO(3, \mathbb{R})$]

1. Soit G un groupe fini agissant sur un ensemble fini X. Montrer que le nombre k d'orbites est donné par

$$k = \frac{1}{|G|} \sum_{g \in G} |\text{Fix}(g)|$$

- 2. Soit G un sous-groupe de $(\mathbb{R}, +)$ non réduit à $\{0\}$. Montrer que G est ou bien dense dans \mathbb{R} , ou bien monogène, *i.e.* de la forme $a\mathbb{Z}$ avec a > 0 (donc discret).
- 3. Montrer que tout sous-groupe fini de $SO(2,\mathbb{R})$ est cyclique. Montrer plus particulièrement tout sous-groupe fini de $SO(2,\mathbb{R})$ est monogène, engendré par la rotation d'angle $\frac{2\pi}{n}$ où n est le cardinal du groupe.
- 4. Montrer que tout sous-groupe fini de $SO(3,\mathbb{R})$ est isomorphe à $\mathbb{Z}/n\mathbb{Z}$, D_{2n} , \mathcal{A}_4 , \mathcal{S}_4 ou \mathcal{A}_5 . Plus précisément si G est un sous-groupe fini de $SO(3,\mathbb{R})$, alors G est conjugué au groupe des rotations préservant l'un des polyèdres suivant (les cas n=1, 2 mis à part)
 - Isom⁺ (pyramide de base un polygone régulier à n côtés) $\simeq \mathbb{Z}/n\mathbb{Z}$;
 - Isom⁺ (double pyramide de base un polygone régulier à n côtés) $\simeq D_n$;
 - Isom⁺(tétraèdre régulier) $\simeq A_4$;
 - Isom⁺(cube) $\simeq S_4$;
 - Isom⁺(icosaèdre régulier) $\simeq A_5$.

Exercice 16.

Soient G un groupe et H un sous-groupe de G.

- (a) Montrer qu'en posant $g \cdot aH = (ga)H$, où $a, g \in G$, on définit une action de G sur l'ensemble G/H des classes à gauche modulo H.
- (b) Montrer que cette action est transitive.

Déterminer le stabilisateur de aH.

(c) On suppose G fini. Calculer le cardinal d'une orbite et retrouver un théorème classique.

Exercice 17.

Considérons les deux éléments suivants du groupe symétrique S_9

$$\sigma_1 = (12)(345)(6789)$$
 $\sigma_2 = (1234)(567)(89)$

Justifier pourquoi σ_1 et σ_2 sont conjugués, puis exhiber une permutation $\omega \in \mathcal{S}_9$ telle que $\sigma_2 = \omega \sigma_1 \omega^{-1}$.

Quel est le cardinal (une expression sous forme de produit d'entiers suffit) de la classe de conjugaison de σ_1 dans \mathcal{S}_9 ?

Exercice 18.

Montrer que le groupe symétrique S_3 est isomorphe à son groupe d'automorphisme $Aut(S_3)$.

Exercice 19.

Soient p un nombre premier et a > 1. En utilisant une action de groupe que l'on précisera montrer que tout groupe G d'ordre p^a admet un élément central (*i.e.* qui commute avec tout élément de G) d'ordre p.

Exercice 20.

Si G est un groupe, on peut faire agir G par conjugaison sur lui-même.

- (1) Montrer que le centre Z(G) de G est constitué des éléments dont l'orbite est réduite à un point.
- (2) (i) Si G est un p-groupe, p premier, montrer que le centre de G n'est pas réduit à {1}.
 - (ii) Soit G un groupe tel que G/Z(G) soit cyclique. Montrer qu'alors G est abélien.
- (3) Montrer que le groupe des matrices triangulaires supérieures unipotentes

$$G = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \in \operatorname{GL}_3(\mathbb{F}_p) \right\}$$

est un groupe non-abélien d'ordre p^3 .