Comparaison locale de fonctions, compléments

Exercice 1

Montrer que

$$\sum_{k=1}^{n} k! \sim_{+\infty} n!$$

Solution 1

Remarquons que

$$\frac{\sum_{k=1}^{n} k!}{n!} = 1 + \sum_{k=1}^{n-1} \frac{k!}{n!}.$$

Or

$$0 \leqslant \sum_{k=1}^{n-1} \frac{k!}{n!} \leqslant \frac{1}{n} + \sum_{k=1}^{n-2} \frac{1}{n(n-1)} \leqslant \frac{1}{n} + \frac{n-2}{n(n-1)}$$

donc $\lim_{n\to+\infty}\sum_{k=1}^{n-1}\frac{k!}{n!}=0$ (théorème des gendarmes). Ainsi

$$\lim_{n \to +\infty} \frac{\sum_{k=1}^{n} k!}{n!} = 1$$

soit
$$\sum_{k=1}^{n} k! \sim_{+\infty} n!$$
.

Exercice 2

Soit $\gamma > 0$. Le but de l'exercice est de montrer que

$$\exp(\gamma n) = \mathcal{O}_{+\infty}(n!)$$

Posons pour $n \ge 1$ $u_n = \exp(\gamma n)$ et $v_n = n!$.

1. Montrer qu'il existe un entier n_0 tel que pour tout $n \ge n_0$

$$\frac{u_{n+1}}{u_n} \leqslant \frac{1}{2} \frac{v_{n+1}}{v_n}.$$

2. En déduire qu'il existe une constante C>0 telle que pour tout $n\geqslant n_0$

$$u_n \leqslant C \left(\frac{1}{2}\right)^{n-n_0} v_n$$

3. Conclure.

Solution 2

1. D'une part

$$\frac{u_{n+1}}{u_n} = \exp(\gamma)$$

et d'autre part

$$\frac{v_{n+1}}{v_n} = n+1.$$

La suite $\left(\frac{u_{n+1}}{u_n}\right)_n$ est donc constante alors que $\left(\frac{v_{n+1}}{v_n}\right)_n$ tend vers l'infini lorsque n tend vers l'infini. Par conséquent il existe un entier n_0 tel que pour tout $n \ge n_0$

$$\frac{u_{n+1}}{u_n} \leqslant \frac{1}{2} \frac{v_{n+1}}{v_n}$$

2. D'après ce qui précède

$$\frac{u_{n_0+1}}{u_{n_0}} \leqslant \frac{1}{2} \frac{v_{n_0+1}}{v_{n_0}}$$

d'où

$$u_{n_0+1} \leqslant \underbrace{\frac{u_{n_0}}{v_{n_0}}}_{C} \frac{1}{2} v_{n_0+1}$$

Supposons que

$$u_n \leqslant C \left(\frac{1}{2}\right)^{n-n_0} v_n$$

pour un certain $n \ge n_0$, alors

$$u_{n+1} \leqslant \frac{1}{2} \frac{u_n}{v_n} v_{n+1} \leqslant \frac{1}{2} C \left(\frac{1}{2}\right)^{n-n_0} v_{n+1} = C \left(\frac{1}{2}\right)^{n+1-n_0} v_{n+1}$$

On a donc montré par récurrence sur n qu'il existe une constante $C = \frac{u_{n_0}}{v_{n_0}} > 0$ telle que pour tout $n \ge n_0$

$$u_n \leqslant C\left(\frac{1}{2}\right)^{n-n_0} v_n$$

3. D'après ce qui précède on a pour tout $n \ge n_0$

$$0 \leqslant \frac{u_n}{v_n} \leqslant C\left(\frac{1}{2}\right)^{n-n_0}$$

Or
$$\lim_{n \to +\infty} 0 = \lim_{n \to +\infty} C\left(\frac{1}{2}\right)^{n-n_0} = 0$$
 donc $\lim_{n \to +\infty} \frac{u_n}{v_n} = 0$ et $u_n = \mathcal{O}_{+\infty}(v_n)$.

Exercice 3

Montrer que si $f \sim \phi$ et $g \sim \psi$ et si ϕ et ψ sont de même signe au voisinage de x_0 (strictement positives ou strictement négatives), alors $f + g \sim \phi + \psi$.

Par exemple au voisinage de $+\infty$ les fonctions $f: x \to \sqrt{1+x^2}$ et $g: x \mapsto x$ sont strictement positives et on a $\sqrt{1+x^2} \sim x$. On en déduit que

$$x + \sqrt{1 + x^2} \underset{+\infty}{\sim} 2x.$$

Solution 3

$$x_0 \in \overline{\mathbb{R}}, \ \psi \text{ et } \phi \text{ deux applications définies au voisinage de } x_0.$$

$$\psi \underset{x_0}{\sim} \phi \iff \forall \ x \in V \setminus \{x_0\} \ f(x) = \Lambda(x)\phi(x) \text{ et } \lim_{x \to x_0} \Lambda(x) = 1.$$

Si $f \sim \phi$ et si $g \sim \overline{\psi}$ alors il existe deux applications Λ_f et Λ_g définies au voisinage de x_0 sur un ensemble $D = V \setminus \{x_0\}$, où V désigne un voisinage de x_0 , telles que pour tout $x \in D$

$$f(x) = \Lambda_f(x)\phi(x)$$
 $g(x) = \Lambda_g(x)\psi(x)$

avec $\lim_{x\to x_0} \Lambda_f(x) = \lim_{x\to x_0} \Lambda_g(x) = 1$. On en déduit que

$$(f+g)(x) = \Lambda_f(x)\phi(x) + \Lambda_g(x)\psi(x) = \left(\Lambda_f(x)\frac{\phi(x)}{\psi(x) + \phi(x)} + \Lambda_g(x)\frac{\psi(x)}{\phi(x) + \psi(x)}\right)\left(\phi(x) + \psi(x)\right).$$

Désignons par Γ l'application

$$D \ni x \mapsto \Lambda_f(x) \frac{\phi(x)}{\phi(x) + \psi(x)} + \Lambda_g(x) \frac{\psi(x)}{\phi(x) + \psi(x)}.$$

On a

$$\Gamma(x) = \Lambda_f(x) + \left(\Lambda_g(x) - \Lambda_f(x)\right) \frac{\psi(x)}{\phi(x) + \psi(x)} = \Lambda_f(x) + \left(\Lambda_g(x) - \Lambda_f(x)\right) A(x)$$

où
$$A(x) = \frac{1}{1 + \frac{\phi(x)}{\psi(x)}}$$
.

Puisque ϕ et ψ sont supposées de même signe au voisinage de x_0 , la quantité A(x) reste bornée dans un voisinage de x_0 (elle est minorée par 0 et est majorée par 1, en effet le quotient $n(x) = \frac{\phi(x)}{\psi(x)}$ est positif au voisinage de x_0 donc d'une part $\frac{1}{1+n}$ est positif et d'autre part $1+n\geqslant 1$ donc $\frac{1}{1+n}\leqslant 1$). On en déduit que $\lim_{x\to x_0} \left(\Lambda_g(x)-\Lambda_f(x)\right)A(x)=0$ et par conséquent que $\lim_{x\to x_0} \Gamma(x)=1$. Comme $f(x)+g(x)=\Gamma(x)(\phi(x)+\psi(x))$ et que Γ a pour limite 1 en x_0 on en conclut que $f+g \sim \phi+\psi$.

Exercice 4

- 1. Montrer que s'il existe deux réels c_1 et c_2 tels que $c_1+c_2\neq 0, f\underset{x_0}{\sim} c_1\phi$ et $g\underset{x_0}{\sim} c_2\phi$, alors $f+g\underset{x_0}{\sim} (c_1+c_2)\phi$.
- 2. Montrer que s'il existe deux réels c_1 et c_2 tels que $c_1+c_2=0$, $f\underset{x_0}{\sim}c_1\phi$ et $g\underset{x_0}{\sim}c_2\phi$, alors $f+g=\mathcal{O}_{x_0}(\phi)$.

Par exemple on a $x^2 - 3x \sim -3x$ et $\sin(x) \sim x$ donc $x^2 - 3x + \sin(x) \sim 2x$ et $x^2 - 3x + 3\sin(x) = \mathcal{O}_0(x)$.

Solution 4

$$x_0 \in \overline{\mathbb{R}}$$
, f et ϕ deux applications définies au voisinage de x_0 . $f \underset{x_0}{\sim} \phi \iff \forall x \in V \setminus \{x_0\} \ f(x) = \Lambda(x)\phi(x)$ et $\lim_{x \to x_0} \Lambda(x) = 1$.

Si $f \sim c_1 \phi$ et $g \sim c_2 \phi$ alors on peut trouver un voisinage V de x_0 et deux applications Λ_1 et Λ_2 définies sur l'ensemble $D = V \setminus \{x_0\}$ telles que pour tout $x \in D$

$$f(x) = c_1 \Lambda_1(x) \phi(x)$$
 $g(x) = c_2 \Lambda_2(x) \phi(x)$

avec $\lim_{x \to x_0} \Lambda_1(x) = \lim_{x \to x_0} \Lambda_2(x) = 1$. Pour tout $x \in D$ on a

$$f(x) + g(x) = \left(c_1 \Lambda_1(x) + c_2 \Lambda_2(x)\right) \phi(x) \tag{1}$$

1. Si $c_1 + c_2 \neq 0$, alors, d'après la relation (1), pour tout $x \in D$ on a

$$f(x) + g(x) = \Gamma(x)(c_1 + c_2)\phi(x)$$

où $\Gamma(x) = \frac{c_1\Lambda_1(x) + c_2\Lambda_2(x)}{c_1 + c_2}$. Comme Λ_1 et Λ_2 ont pour limite 1 en x_0 on a $\lim_{x \to x_0} \Gamma(x) = 1$ et par définition $f + g \underset{x_0}{\sim} (c_1 + c_2)\phi$.

2. Si $c_1 + c_2 = 0$, alors comme Λ_1 et Λ_2 ont pour limite 1 en x_0 on a $\lim_{x \to x_0} \left(c_1 \Lambda_1(x) + c_2 \Lambda_2(x) \right) = c_1 + c_2 = 0$. Compte tenu de la relation (1) on a $f + g = \mathcal{O}_{x_0}(\phi)$.

Exercice 5

Montrer que si $f = \mathcal{O}_{x_0}(\phi)$, alors $f + \phi \sim_{x_0} \phi$.

Par exemple

- comme $\sin(x) \sim x$ et $x^2 = \mathcal{O}_0(x)$ on a $\sin(x) + x^2 \sim x$.
- puisque $\sqrt{1+x^2} \underset{+\infty}{\sim} x$ et que $\ln(x) = \mathcal{O}_{+\infty}(x)$ on a $\ln(x) + \sqrt{x^2+1} \underset{+\infty}{\sim} x$.

Solution 5

$$\begin{array}{l} x_0 \in \overline{\mathbb{R}}, \ f \ \text{et} \ \phi \ \text{deux applications définies au voisinage de} \ x_0. \\ f \underset{x_0}{\sim} \phi \Longleftrightarrow \forall \, x \in V \smallsetminus \{x_0\} \ f(x) = \Lambda(x) \phi(x) \ \text{et} \ \lim_{x \to x_0} \Lambda(x) = 1. \end{array}$$

$$x_0 \in \overline{\mathbb{R}}$$
, f et ϕ deux applications définies au voisinage de x_0 .
 $f = \mathcal{O}_{x_0}(\phi) \iff \forall x \in V \setminus \{x_0\} \ f(x) = \varepsilon(x)\phi(x) \ \text{et } \lim_{x \to x_0} \varepsilon(x) = 0.$

Si $f = \mathcal{O}_{x_0}(\phi)$ alors il existe une application ε définie au voisinage de x_0 sur un ensemble $D = V \setminus \{x_0\}$, où V désigne un voisinage de x_0 , telle que pour tout $x \in D$,

$$f(x) = \varepsilon(x)\phi(x)$$
 $\lim_{x \to x_0} \varepsilon(x) = 0.$

On en déduit que pour tout $x \in D$,

$$f(x) + \phi(x) = (1 + \varepsilon(x))\phi(x) = \Lambda(x)\phi(x)$$

où $\Lambda : x \in D \mapsto 1 + \varepsilon(x)$. Comme l'application Λ admet pour limite 1 en x_0 , on a $f + \phi \sim \phi$.

Exercice 6

Montrer que si $f \underset{x_0}{\sim} \phi$ et $g = \mathcal{O}_{x_0}(\phi)$, alors $f + g \underset{x_0}{\sim} \phi$.

Par exemple

- \diamond puisque $\sin(x) \sim x$ et que $x^2 = \mathcal{O}_0(x)$ on a $\sin(x) + x^2 \sim x$.
- \diamond comme $\sqrt{x^2+1} \underset{+\infty}{\sim} x$ et $\ln(x) = \mathcal{O}_{+\infty}(x)$ on a $\ln(x) + \sqrt[3]{x^2+1} \underset{+\infty}{\sim} x$.

Solution 6

$$x_0 \in \overline{\mathbb{R}}$$
, f et ϕ deux applications définies au voisinage de x_0 .
 $f \sim_{x_0} \phi \iff \forall x \in V \setminus \{x_0\} \ f(x) = \Lambda(x)\phi(x)$ et $\lim_{x \to x_0} \Lambda(x) = 1$.

$$x_0 \in \overline{\mathbb{R}}, f \text{ et } \phi \text{ deux applications définies au voisinage de } x_0.$$

$$f = \mathcal{O}_{x_0}(\phi) \Longleftrightarrow \forall \, x \in V \setminus \{x_0\} \, f(x) = \varepsilon(x)\phi(x) \text{ et } \lim_{x \to x_0} \varepsilon(x) = 0.$$

Si $f \sim \phi$ et $g = \mathcal{O}_{x_0}(\phi)$ alors on peut trouver un voisinage V de x_0 et deux applications Λ et ε définies sur l'ensemble $D = V \setminus \{x_0\}$ telles que pour tout $x \in D$

$$f(x) = \Lambda(x)\phi(x)$$
 $g(x) = \varepsilon(x)\phi(x)$

avec $\lim_{x\to x_0} \Lambda(x) = 1$ et $\lim_{x\to x_0} \varepsilon(x) = 0$. On a donc pour tout x dans D

$$f(x) + g(x) = (\Lambda(x) + \varepsilon(x))\phi(x).$$

Puisque $\lim_{x \to x_0} (\Lambda(x) + \varepsilon(x)) = 1$ on a $f + g \sim_{x_0} \phi$.

Exercice 7

Soient $x_0 \in \mathbb{R}$, ψ et ϕ deux applications définies et continues au voisinage de x_0 . On suppose que ϕ est strictement positive au voisinage de x_0 (pas nécessairement en x_0).

- 1. Montrer que si $\psi(x) \underset{x_0}{\sim} \phi(x)$, alors pour tout $\alpha \in \mathbb{R}$ on a $(\psi(x))^{\alpha} \underset{x_0}{\sim} (\phi(x))^{\alpha}$.
- 2. Supposons de plus que ϕ admet pour limite en x_0 le réel $\ell \in [0,1[\cup]1,+\infty[$ ou que ϕ tend vers $+\infty$ en x_0 . Si $\psi(x) \underset{x_0}{\sim} \phi(x)$, alors $\ln(\psi(x)) \underset{x_0}{\sim} \ln(\phi(x))$.

Solution 7

Supposons que $\psi \sim \phi$. Il existe une application Λ définie au voisinage de x_0 sur un ensemble $D = V \setminus \{x_0\}$, où V désigne un voisinage de x_0 , telle que pour tout $x \in D$ on ait $\psi(x) = \Lambda(x)\phi(x)$ avec $\lim_{x \to x_0} \Lambda(x) = 1$. Comme ψ et ϕ sont continues et que ϕ ne s'annule pas au voisinage de x_0 , Λ est continue au voisinage de x_0 . Le fait que $\lim_{x \to x_0} \Lambda(x) = 1$ implique que Λ ne s'annule pas au voisinage de x_0 et est strictement positive au voisinage de x_0 . Puisque par ailleurs ϕ est strictement positive, ψ est également strictement positive au voisinage de x_0 .

1. Commençons par établir la première assertion. Pour $x \in D$ on a $\psi(x) = \Lambda(x)\phi(x)$ et par conséquent pour tout réel α ,

$$\alpha \ln (\psi(x)) = \alpha \ln (\Lambda(x)) + \alpha \ln (\phi(x)).$$

On en déduit que

$$\underbrace{\exp\left(\alpha\ln\left(\psi(x)\right)\right)}_{\psi(x)^{\alpha}} = \underbrace{\exp\left(\alpha\ln\left(\Lambda(x)\right)\right)}_{\theta(x)} \underbrace{\exp\left(\alpha\ln\left(\phi(x)\right)\right)}_{\phi(x)^{\alpha}}.$$

Comme $\lim_{x\to x_0} \Lambda(x) = 1$, on a $\lim_{x\to x_0} \theta(x) = 1$. On en conclut que $\psi^{\alpha} \sim \phi^{\alpha}$.

2. Intéressons-nous maintenant à la seconde assertion. Pour $x \in V \setminus \{x_0\}$ on a

$$\ln(\psi(x)) = \ln(\Lambda(x)\phi(x)) = \ln(\Lambda(x)) + \ln(\phi(x)) = \Gamma(x)\ln(\phi(x))$$

où
$$\Gamma \colon D \to \mathbb{R}, \ x \mapsto 1 + \frac{\ln \left(\Lambda(x)\right)}{\ln \left(\phi(x)\right)}.$$

Puisque $\lim_{x\to x_0} \Lambda(x) = 1$ on a $\lim_{x\to x_0} \ln\left(\Lambda(x)\right) = 0$. Dans le cas où ϕ admet pour limite en x_0 le réel $\ell\in[0,1[\cup]1,+\infty[$ on a

$$\lim_{x \to x_0} \ln \left(\phi(x) \right) = \ln(\ell) \neq 0$$

et par conséquent $\lim_{x\to x_0} \Gamma(x) = 1$. Dans le cas où ϕ tend vers $+\infty$ en x_0 la fonction $x\mapsto \ln\left(\phi(x)\right)$ tend vers $+\infty$ quand x tend vers x_0 et par suite $\lim_{x\to x_0} \Gamma(x) = 1$. On en déduit dans tous les cas que $\ln(\psi) \sim \ln(\phi)$.

Exercice 8

Soient φ , $\psi \colon \mathbb{R} \to \mathbb{R}$. On suppose que $\lim_{x \to +\infty} \varphi(x) = +\infty$.

- 1. Supposons que $\psi = \mathcal{O}_{+\infty}(\varphi)$. Montrer que $\exp(\psi) = \mathcal{O}_{+\infty}(\exp(\varphi))$.
- 2. Montrer que la réciproque est fausse.
- 3. Comparer $\varphi(x) = (\ln(\ln x))^{x^{\ln x}}$ et $\psi(x) = (\ln x)^{x^{\ln(\ln x)}}$ au voisinage de $+\infty$.

Solution 8

- 1. Rappelons que $\frac{\exp(\psi)}{\exp(\varphi)} = \exp(\psi \varphi)$. Or $g \varphi \sim_{+\infty} \varphi$ car par hypothèse $\psi = \mathcal{O}_{+\infty}(\varphi)$ donc $\lim_{x \to +\infty} (\psi \varphi)(x) = -\infty$. Par composition des limites on obtient $\lim_{x \to +\infty} \exp((\psi \varphi)(x)) = 0$ et donc $\exp(\psi) = \mathcal{O}_{+\infty}(\exp(\varphi))$.
- 2. Montrons que la réciproque est fausse : posons $\varphi(x) = x^2 + x$ et $\psi(x) = x^2$. D'une part $\varphi \sim_{+\infty} g$. D'autre par $\exp(\varphi(x)) = \exp(x^2) \exp(x)$ et $\exp(\psi(x)) = \exp(x^2)$ d'où

$$\frac{\exp(\psi(x))}{\exp(\varphi(x))} = \exp(-x)$$

et
$$\lim_{x \to +\infty} \frac{\exp(\psi(x))}{\exp(\varphi(x))} = 0$$
 et $\exp(\psi) = \mathcal{O}_{+\infty}(\exp(\varphi))$.

3. Prenons deux fois le logarithme; on trouve alors au voisinage de $+\infty$

$$\ln(\ln(\varphi(x))) = \ln x \ln x + \ln(\ln(\ln(\ln x)))$$

$$\ln(\ln(\psi(x))) = \ln(\ln x) \ln x + \ln(\ln(\ln x))$$

Ainsi $\ln(\ln(\psi(x))) = \mathcal{O}_{+\infty}(\ln(\ln\varphi(x)))$. Notons que $\ln(\ln\varphi(x))$ et donc $\ln\varphi(x)$ tendent toutes deux vers $+\infty$ lorsque x tend vers $+\infty$; on applique alors deux fois le résultat de la première question pour conclure.

Exercice 9

Soient φ et ψ deux fonctions définies au voisinage d'un point $p \in \mathbb{R}$. Supposons que φ et ψ soient strictement positives, que $\varphi \sim_p \psi$ et que ψ admette une limite $\ell \in \mathbb{R}_+ \cup \{+\infty\}$.

Montrer que si $\ell \neq 1$, alors $\ln \varphi \sim_p \ln \psi$.

Que se passe-t-il si $\ell = 1$?

Solution 9

Supposons dans un premier temps que ℓ appartient à $]0,+\infty[$. Alors $\lim_{x\to a}\varphi(x)=\ell$ et par composition

$$\lim_{x \to p} \ln(\varphi(x)) = \lim_{x \to p} \ln(\psi(x)) = \ln \ell \neq 0.$$

On en déduit que $\ln \varphi \sim_p \ln \psi$.

Supposons désormais que $\ell = +\infty$. On peut alors écrire

$$\frac{\ln \varphi}{\ln \psi} = \frac{\ln \left(\frac{\varphi}{\psi}\psi\right)}{\ln \psi} = \frac{\ln \left(\frac{\varphi}{\psi}\right) + \ln \psi}{\ln \psi} = \frac{\ln \left(\frac{\varphi}{\psi}\right)}{\ln \psi} + 1$$

Or $\lim_{x\to p} \ln\left(\frac{\varphi}{\psi}(x)\right) = 0$ et $\lim_{x\to p} \ln(\psi(x)) = +\infty$ donc $\lim_{x\to p} \frac{\ln\left(\frac{\varphi}{\psi}(x)\right)}{\ln(\psi(x))} = 0$; on a bien $\ln\varphi\sim_p \ln\psi$.

Le cas $\ell = 0$ est similaire au précédent.

Si $\ell=1$, alors le résultat n'est plus vrai. Posons par exemple $\varphi(x)=1+x, \ \psi(x)=1+x^2$ et p=0. Alors $\varphi \sim_0 1$, $\psi \sim_0 1$ mais $\ln \varphi(x) \sim_0 x$ tandis que $\ln \psi(x) \sim_0 x^2$ et $x \not\sim_0 x^2$.

Exercice 10

Soient $(u_n)_n$ et $(v_n)_n$ deux suites réelles positives telles que $u_n \sim_{+\infty} v_n$. Posons

$$U_n = \sum_{k=1}^n u_k \qquad V_n = \sum_{k=1}^n v_k$$

et supposons que $\lim_{n \to +\infty} V_n = +\infty$. Montrons que $U_n \sim_{+\infty} V_n$.

Solution 10

Soit $\varepsilon > 0$. Puisque $u_n \sim_{+\infty} v_n$ et $(v_n)_n$ est une suite positive il existe un entier n_0 tel que pour tout $n \geqslant n_0$ on ait les inégalités

$$(1-\varepsilon)v_n \leqslant u_n \leqslant (1+\varepsilon)v_n$$
.

Soit $n \ge n_0$. On peut écrire

$$U_n = \sum_{k=1}^{n_0 - 1} u_k + \sum_{k=n_0}^n u_k$$

de sorte que

$$(1-\varepsilon)\sum_{k=n_0}^n v_k + \sum_{k=1}^{n_0-1} u_k \leqslant U_n \leqslant (1+\varepsilon)\sum_{k=n_0}^n v_k + \sum_{k=1}^{n_0-1} u_k.$$

Remarquons que

$$\sum_{k=n_0}^{n} v_k = V_n - \sum_{k=1}^{n_0 - 1} v_k$$

de sorte que

$$(1-\varepsilon)V_n + \sum_{k=1}^{n_0-1} u_k - (1-\varepsilon)\sum_{k=1}^{n_0-1} v_k \leqslant U_n \leqslant (1+\varepsilon)V_n + \sum_{k=1}^{n_0-1} u_k - (1+\varepsilon)\sum_{k=1}^{n_0-1} v_k$$

puis que

$$(1-\varepsilon) + \frac{1}{V_n} \sum_{k=1}^{n_0-1} u_k - \frac{1-\varepsilon}{V_n} \sum_{k=1}^{n_0-1} v_k \leqslant \frac{U_n}{V_n} \leqslant (1+\varepsilon) + \frac{1}{V_n} \sum_{k=1}^{n_0-1} u_k - \frac{1+\varepsilon}{V_n} \sum_{k=1}^{n_0-1} v_k.$$

Comme $\lim_{n\to +\infty} V_n = 0$ il existe un entier $n_1 \ge n_0$ tel que pour tout $n \ge n_1$ on ait

$$(1-\varepsilon)-\varepsilon \leqslant \frac{U_n}{V_n} \leqslant (1+\varepsilon)+\varepsilon.$$

Il en résulte que $\lim_{n\to+\infty} \frac{U_n}{V_n} = 1$ et donc que $U_n \sim_{+\infty} V_n$.

Soit $(v_n)_n$ une suite tendant vers 0. Supposons que $v_n + v_{2n} = \mathcal{O}_{+\infty}(\frac{1}{n})$.

1. Montrer que pour tout $n \ge 0$ et tout $p \ge 0$

$$|v_n| \le \sum_{k=0}^p |v_{2^k n} + v_{2^{k+1} n}| + |v_{2^{p+1} n}|$$

2. En déduire que $v_n = \mathcal{O}_{+\infty}(\frac{1}{n})$.

Solution 11

1. On a

$$v_n = (v_n + v_{2n}) - (v_{2n} + v_{4n}) + (v_{4n} + v_{6n}) - \dots$$

soit pour $p \geqslant 0$

$$v_n = (v_n + v_{2n}) + \ldots + (-1)^k (v_{2k_n} + v_{2k+1_n}) + \ldots + (-1)^p (v_{2p_n} + v_{2p+1_n}) + (-1)^{p+1} v_{2p+1_n}.$$

Grâce à l'inégalité triangulaire on obtient

$$|v_n| \le \sum_{k=0}^p |(-1)^k (v_{2^k n} + v_{2^{k+1} n})| + |(-1)^{p+1} v_{2^{p+1} n}|$$

d'où

$$|v_n| \le \sum_{k=0}^p |v_{2^k n} + v_{2^{k+1} n}| + |v_{2^{p+1} n}|.$$

2. Utilisons l'hypothèse $v_n + v_{2n} = \mathcal{O}_{+\infty}\left(\frac{1}{n}\right)$. Soit $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que pour tout $n \ge n_0$ on ait $|v_n + v_{2n}| \le \frac{\varepsilon}{n}$. Remarquons que si $n \ge n_0$ et $k \ge 0$ on a $2^k n \ge n_0$. Ceci combiné avec l'inégalité précédente assure que

$$|v_n| \leqslant \sum_{k=0}^p \frac{\varepsilon}{2^k n} + |v_{2^{p+1}n}|.$$

Or d'après la somme d'une série géométrique

$$\sum_{k=0}^{p} \frac{1}{2^k} \leqslant 2$$

donc pour tout $p \ge 0$ et tout $n \ge n_0$

$$|v_n| \leqslant \frac{2\varepsilon}{n} + |v_{2^{p+1}n}|.$$

Par ailleurs la suite $(v_n)_n$ tend vers 0 donc pour $n \ge n_0$ il existe p suffisamment grand tel que

$$|v_{2^{p+1}n}| \leqslant \frac{\varepsilon}{n}$$

On en déduit que $|v_n| \leq \frac{3\varepsilon}{n}$ pour $n \geq n_0$ soit $n|v_n| \leq 3\varepsilon$ pour $n \geq n_0$. Autrement dit $v_n = \mathcal{O}_{+\infty}\left(\frac{1}{n}\right)$.

Exercice 12

Soit $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ un polynôme. On note p le plus petit indice tel que $a_p \neq 0$. Déterminer un équivalent simple de P en $+\infty$.

Déterminer un équivalent simple de P en 0.

Solution 12

Le terme dominant en $+\infty$ est a_nx^n . On divise donc P par a_nx^n et on obtient

$$\frac{P(x)}{a_n x^n} = 1 + \sum_{k=p}^{n-1} a_k x^{k-n}$$

Mais pour chaque $p \leqslant k \leqslant n-1$ on a k-n < 0 et donc $\lim_{x \to +\infty} x^{k-n} = 0$. On en déduit que $\lim_{x \to +\infty} \frac{P(x)}{a_n x^n} = 1$ et que $P \sim_{+\infty} a_n x^n$.

La méthode est similaire en 0 mais cette fois le terme dominant est le terme de plus petit degré. On divise donc P par $p_p x^p$ et on obtient

$$\frac{P(x)}{a_p x^p} = 1 + \sum_{k=p+1}^{n} a_k x^{k-p}$$

Pour
$$k\geqslant p+1$$
 on a $\lim_{x\to 0}x^{k-p}=0$. Ainsi $\lim_{x\to 0}\frac{P(x)}{a_px^p}=1$ et $P(x)\sim_0 a_px^p$.